7.5.24

Quercitron Bark
(CHAPTER VII. Flavonol Group.)
(Osa artikkelista)

The Natural Organic Colouring Matters
By
Arthur George Perkin, F.R.S., F.R.S.E., F.I.C., professor of colour chemistry and dyeing in the University of Leeds
and
Arthur Ernest Everest, D.Sc., Ph.D., F.I.C., of the Wilton Research Laboratories; Late head of the Department of Coal-tar Colour Chemistry; Technical College, Huddersfield
Longmans, Green and Co.
39 Paternoster Row, London
Fourth Avenue & 30th Street, New York
Bombay, Calcutta, and Madras
1918

Kaikki kuvat (kemialliset kaavat) puuttuvat // None of the illustrations (of chemical formulas) included.

This important yellow dyestuff, the latest addition to the somewhat meagre list of commercial natural colouring matters, was discovered and introduced by Bancroft in 1775. In his "Philosophy of Permanent Colours" he states (ii., 113): "Quercitron bark is one of the objects of a discovery of which the use and application for dyeing are exclusively vested in me, for a term of years by an Act of Parliament in the twenty-fifth year of his present Majesty's reign".

Quercitron bark is the inner bark of a species of oak known as Quercus discolor; Ait (Q. tinctoria), which is a native of the Middle and Southern States of America. The tree in the south is described as being from 60 to 80 feet high, with a trunk from 6 to 10 feet in diameter; but in the north it does not attain to this size. In order to obtain the dyestuff the epidermis or exterior blackish coat of bark is usually removed by shaving and the inner portion then detached and ground. The product may be separated into stringy fibres and a light fine powder, the latter of which contains the principal portion of the colouring matter.

Quercitron bark and its preparations are still used to a considerable extent, although not so much as was formerly the case. This is not only due to the introduction of the artificial colouring matters, but because it has been supplanted for many purposes by the less costly old fustic.

Quercetin, C15H10O7;, the colouring matter of quercitron bark, has been the subject of numerous researches, and many of these unfortunately resulted in the publication of complicated and unsatisfactory formulæ. At an early stage it was ascertained that quercetin does not exist in the plant, at least to any extent in the free condition, but in the form of its glucoside quercitrin.

To prepare quercetin the following method devised by the late Sir W. H. Perkin, and employed by him for several years on the manufacturing scale, gives good resets. Quercitron bark dust is macerated with moderately strong salt solution to remove gummy substances, filtered, and then extracted with dilute ammonia. The cold ammoniacal liquid is treated with a slight excess of hydrochloric acid, causing the separation of certain impurities in the form of a brown flocculent precipitate. This is removed, and the pale yellow acid solution of the glucoside is boiled for about thirty minutes. The glucoside is thus hydrolysed and almost chemically pure quercetin separates in the form of pale yellow needles, which are collected while the mixture is still warm and washed with water. It is readily soluble in alcohol, and dissolves in alkaline solutions with a yellow colour. With aqueous lead acetate it gives a bright orange- red precipitate, and with alcoholic ferric chloride a dark green colour.

The most important of the early investigations of quercetin was carried out by Liebermann and Hamburger (Ber., 12, 1178), who assigned to it the formula C24H16O11 and to quercitrin the formula C26H38O20 Herzig (Monatsh., 5, 72; 6, 863; 9, 537; 12, 172; 14, 53; 15, 697), who made an elaborate series of researches on this subject, at first adopted this formula. Subsequently it was ascertained that quercetin was in reality C15H10O7, and this receivedsupport by the examination of its compounds with mineral acids (Perkin and Pate, Chem. Soc. Trans., 1895, 67, 647).

When quercetin is fused with alkali, it gives protocatechuic add and phloroglucinol, and if its alkaline solution is oxidised with air, the same products are obtained. By the more gentle action of the alkali, Hlasiwetz and Pfaundler (Jahres., 1864, 561) obtained certain intermediate products of the hydrolysis, paradiscetin, C15H10O6, yellow needles, quercetic acid, C15H10O7, colourless needles, and quercimeric acid, C8H6O5, H2O, colourless crystals. Herzig and others who have reinvestigated this decomposition have been unable to obtain the substances of Hlasiwetz and Pfaundler, and if these compounds are in reality chemical individuals, it seems likely that their formation was due to the action of some special impurity contained in the alkali employed by these chemists.

[---]

Quercetin is a strong dyestuff, and gives with mordanted wool the following shades, which are almost identical with those produced by fisetin:
Chromium. Red-brown.
Aluminium. Brown-orange.
Tin. Bright orange.
Iron. Olive-black.

[---]

Quercitrin, the glucoside of quercetin, was first isolated from quercitron bark by Chevreul, and has been examined by numerous chemists. The method usually employed for the preparation of this substance is that devised by Zwenger and Dronke (Annalen, Suppl., 1, 267), and this was subsequently utilised by Liebermann and Hamburger (Ber., 12, 1179).

Quercitron bark is extracted with 5-6 times its weight of boiling 50 per cent, alcohol, the extract evaporated to one-half, and treated with a little acetic acid, followed by lead acetate solution. The precipitate is removed, sulphuretted hydrogen is passed through the filtrate, and after removal of lead sulphide the clear liquid is evaporated to dryness. The residue is dissolved in a little hot alcohol, the solution treated with water and the crude quercitrin which separates on cooling is purified by repeated crystallisation from water.

A very convenient source of quercitrin is yellow flavine (Perkin, private communication), which consists almost entirely of this substance, and is usually free from quercetin. A hot aqueous extract of this material gives, on cooling, a crystalline precipitate of the glucoside, and this by recrystallisation from water with the aid of animal charcoal is readily obtained pure.

[---]

It was formerly considered that the glucosides (colouring principles) were hydrolysed during the dyeing operation, and that the shades thus obtained were due not to the glucosides, but to the free colouring matters. This in certain cases is correct, especially when the plant contains an enzyme capable of effecting the hydrolysis; but on the other hand, in many cases the glucoside is itself the colouring matter and directly responsible for the dyeing effect. Quercitrin is an instance in point (Perkin, Chem. Soc. Trans., 1902, 81, 479), and gives upon mordanted fabrics shades which are distinct from those of quercetin itself.

Quercitrin.
Chromium - Full brown-yellow.
Aluminium - Full golden-yellow.
Tin - Lemon-yellow.
Iron - Deep olive.

Quercetin.
Chromium - Red-brown.
Aluminium - Brown-orange.
Tin - Bright orange..
Iron - Olive black.

Kaempferol.
Chromium - Brown-yellow.
Aluminium - Yellow.
Tin - Lemon-yellow..
Iron - Deep olive-brown.

In dyeing property quercitrin very closely resembles kaempferol, and, indeed, differs but little from morin (old fustic) and luteolin (weld) in this respect. It was thus probable, according to Perkin (loc. cit.), that the constitution of the glucoside is to be represented by one of the two following formulæ: [KUVA PUTTUU]

[---]

The colours given by quercitrin are somewhat faster than those derived from quercetin.

4.5.24

Yellow Cedar
(CHAPTER VII. Flavonol Group.)

The Natural Organic Colouring Matters
By
Arthur George Perkin, F.R.S., F.R.S.E., F.I.C., professor of colour chemistry and dyeing in the University of Leeds
and
Arthur Ernest Everest, D.Sc., Ph.D., F.I.C., of the Wilton Research Laboratories; Late head of the Department of Coal-tar Colour Chemistry; Technical College, Huddersfield
Longmans, Green and Co.
39 Paternoster Row, London
Fourth Avenue & 30th Street, New York
Bombay, Calcutta, and Madras
1918

Kaikki kuvat (kemialliset kaavat) puuttuvat // None of the illustrations (of chemical formulas) included.

The Rhodosphacra rhodanthema (Engl.) or yellow cedar, a tree growing to the height of 70 or 80 feet, is indigenous to the northern part of New South Wales.

The colouring matter of this dyewood is fisetin, which is readily isolated by the method described in connection with young fustic (Perkin, Chem. Soc. Trans., 1897, 71, 1194).

A second substance, C36H30O16?, colourless needles, melting-point 215-217°, is also present in small amount, and may be identical with fustin, the glucoside of fisetin obtained from young fustic by Schmid (Ber., 1886, 19, 1755).

The shades given by the yellow cedar are slightly weaker and differ considerably from those given by young fustic (Rhus cotinus), although both contain the same colouring matter. Employing mordanted woollen cloth, the following distinctions are observed:
Young fustic - Chromium. Reddish-brown; Aluminium. Orange; Tin Orange-yellow; Iron. Brown-olive
Yellow cedar - Chromium Yellowish-brown; Aluminium. Brownish-yellow; Tin Golden-yellow; Iron Olive
and these may be due to varying amounts of the glucoside which is contained in both plants.

11.4.24

Young Fustic
(CHAPTER VII. Flavonol Group.)

The Natural Organic Colouring Matters
By
Arthur George Perkin, F.R.S., F.R.S.E., F.I.C., professor of colour chemistry and dyeing in the University of Leeds
and
Arthur Ernest Everest, D.Sc., Ph.D., F.I.C., of the Wilton Research Laboratories; Late head of the Department of Coal-tar Colour Chemistry; Technical College, Huddersfield
Longmans, Green and Co.
39 Paternoster Row, London
Fourth Avenue & 30th Street, New York
Bombay, Calcutta, and Madras
1918

Kaikki kuvat (kemialliset kaavat) puuttuvat // None of the illustrations (of chemical formulas) included.

Cotinus coggygria

Young fustic consists of the wood of the stem and larger branches of the Rhus cotinus (Linn.), a small tree which is a native of Southern Europe, and the West India Islands. It is a hard compact yellow wood, and is usually imported in small bundles or faggots. Within the last few years young fustic has almost disappeared from the market, not only on account of the artificial colouring matters, but because the shades it yields lack permanence, and the percentage of colouring matter it contains is small. The leaves of the R. cotinus constitute Venetian sumach, a tanning material which is employed to some extent in Italy and Southern Europe.

Fisetin, C15H10O6, the colouring matter of young fustic, was first isolated by Chevreul ("Leçons de Chimie appliquee a la Teinture," A. ii., 150), who gave it the name "Fustin". Bolley (Schweiz. polyt. Zeitschr., 1864, 9, 22) considered that it was identical with quercetin, but Koch (Ber., 5, 285) maintained that fisetin was probably an aldehyde of quercetinic acid.

Schmid (Ber., 1886, 19, 1734), who carried out an exhaustive examination of this dyewood, obtained fisetin in a pure condition and proved that it was not identical with quercetin. He found that in addition to the free colouring matter, young fustic contains a glucoside of fisetin combined with tannic acid to which he gave the name of fustin tannide.

To prepare fisetin, Schmid (loc. cit.), and later Herzig (Monatsh., 12, 178), employed "cotinin" (v. infra), a commercial preparation of young fustic which is no longer on the market. According to Perkin and Pate (Chem. Soc. Trans., 1895, 67, 648), fisetin is readily isolated from the dyewood as follows:

Young fustic is extracted with boiling water, and the extract treated with lead acetate solution. The lead compound of the colouring matter is collected, made into a thin paste with water, and in a fine stream run into boiling dilute sulphuric acid. After removal of lead sulphate the dark-coloured filtrate, on cooling, deposits a semicrystalline brownish mass, which is collected and purified by crystallisation from dilute alcohol.

[---]

Fisetin is a strong colouring matter and gives shades which are almost identical with those produced by quercetin, rhamnetin, and myricetin. The colours given with wool mordanted with chromium, aluminium, and tin are, respectively, red-brown, brown-orange, and bright red-orange (Perkin and Hummel, Chem. Soc. Trans., 1896, 69, 1290).

The glucoside of fisetin, according to Schmid (loc. cit.), is prepared as follows: A boiling aqueous extract of young fustic is treated with lead acetate, the precipitate removed, the clear liquid freed from lead by means of sulphuretted hydrogen, and saturated with salt. The mixture is filtered, the filtrate extracted with ethyl acetate, and the extract evaporated. There is thus obtained a residue consisting of the crude fustin-tannide, which is purified by solution in water, precipitation with salt, and extraction with ethyl acetate.

Fustin tannide crystallises in long yellowish- white needles, which are easily soluble in water, alcohol, and ether. When heated it decomposes above 200°. If a solution of fustin tannide in hot acetic acid is treated with water, and allowed to stand for some time, colourless crystals of fustin are gradually deposited.

Fustin crystallises from water in yellowish-white needles, melting-point 218-219°, and when digested with boiling dilute sulphuric acid gives fisetin and a sugar, the nature of which has not been determined. The formula given to this glucoside C58H46O23 by Schmid cannot be regarded as correct, in view of the fact that the true formula of fisetin is now known to be C15H10O6.

Dyeing Properties of Young Fustic.

The colours derived from young fustic are all fugitive to light, hence this dyestuff has lost its importance. In silk dyeing it was formerly used for dyeing brown, the silk being mordanted with alum, and afterwards dyed with a decoction of young fustic, peachwood, and logwood. With the various metallic salts as mordants young fustic yields colours somewhat similar to those obtained from old fustic, the chromium colour is, however, much redder, being a reddish-brown, and the aluminium yellow is much duller; stannous chloride on the contrary gives an incomparably more brilliant orange, not unlike that obtainable from flavin or from Persian berries (Hummel).

Fisetin is present also as glucoside in the wood of the yellow cedar, Rhodosphacra rhodanthema, and in the wood of the Quebracho Colorado (loc. cit.).

The leaves of the R. cotinus contain myricetin.