28.5.22

Silk Dyeing (Continued)

The Craftsman 5, FEB 1909

By professor Charles Pellew, of Columbia University: Number VIII

Skein Dyeing.

When weighting or adulteration is not employed, i. e. in the so-called "pure dye" process, the dyeing of skein silk resembles very closely the piece dyeing described in the last article. The degummed silk is immersed in a dyebath containing the dyestuffs (Acid Colors) dis solved in "boiled-off liquor" slightly acidified with sulphuric acid. The bath is heated nearly to the boiling point and the silk turned in it until the desired shade is produced. It is then taken out, washed thoroughly in water to remove the last traces of acid and then brightened by pass ing through a soap bath with some oil, and later through a bath of weak acid to develop the "scroop." A very important part of the process is the final drying and finish ing. The drying should be done slowly and carefully and not proceed too far or the silk will be brittle. As is well known to dyers, silk has the power of absorbing 25 or 30 per cent. of its weight of water without becoming perceptibly damp to the hand, and this moisture when not carried too far is an actual benefit to the material, making it stronger and more elastic. This property is often made use of by the honest (?) dyer when, in case some of the silk in a lot has been spoiled by accident or carelessness, he makes up the difference in weight by the liberal use of the watering pot.

The finishing process is perhaps the most difficult and technical of all, for the value of the finished product depends very large ly on it and it is almost impossible for an amateur to accomplish it. The skeins, after drying, are hung on a heavy polished wooden bar and with a heavy smooth wooden stick are shaken out, straightened, pulled, twisted and worked until the fibers are all parallel, the kinks taken out, any weak or injured portion cut out and the whole skein has acquired the proper amount of luster.

Sometimes, for especially brilliant fabrics, the skeins are "lustered" by machinery, the so-called "metallic lustering," when the silk, generally enveloped in steam so as to be both hot and damp, is pulled out between two steel arms until it has been stretched a considerable percentage of its original length. This undoubtedly lessens the strength of the fiber considerably and diminishes its elasticity, but under this strain each fiber is stretched out perfectly smooth and thus becomes much more brilliant and lustrous.

Dyeing Silk Black.

The above process, though well suited for quickly producing colors on silk which will be bright and lustrous and, if desired, fast to light although not to washing, is not adapted for blacks. The silk fiber is too transparent and shining to dye a full deep black with any soluble dyestuff. The color, to give really good effect, must be laid on in an insoluble form, either by the use of metallic mordants or by some process of oxidation or condensation. The best that can be done with the Acid Dyes is to give a dark, deep gray, which by itself may look fairly satisfactory, but does not hold its own when matched against a real full black.

The commercial way of obtaining this effect is by the use of the wellknown vegetable dyestuffs contained in logwood. Comparatively few dyers take the trouble to make their solutions from the wood itself, but three or four large companies make a business of preparing and marketing logwood extracts of great purity and uniformity, both in solid and paste form. To produce a black with logwood it is necessary to mordant the silk carefully with iron, tannin and in some processes with salts of tin and of chromium. In all cases, therefore, silk dyed black with logwood contains a certain percentagesay, 1520 per cent. of its weight of foreign ingredients. When carefully done this does no harm to the material and the "pure dyed" logwood blacks are perfectly satisfactory, both for shade, luster and durability.

Weighting of Silk.

Unfortunately, raw silk commands a high price in the market, from $3.50 to $6.00 a pound, and there has been for many years a keen and steady competition between the various dyers and manufacturers to substitute cheaper materials for this expensive raw product. During the last few years this has resulted in the production of the different varieties of artificial silk, concerning which more will be said in a future article. Besides this, however, the dyers and chemists have been straining every nerve to make a small amount of raw silk go a long way by first increasing its weight, and secondly, and as a necessary consequence, materially increasing its bulk by the use of chemicals in the dyeing process.

The first efforts in this direction were based upon the saving of some or, in deed, nearly all of the gum which is wasted in the washing or degumming process previously described. This gum, which amounts to from 25 to 35 per cent. of the raw silk, makes the silk stiff in texture and dull in color, and more difficult to dye. But by modifying the dyeing and especially the finishing process, it was found possible to produce the so-called "souples," i. e. silks with little or no luster, but with the characteristic "scroop" or "feel" and capable of replacing bright silk as a filling in many fabrics and yet with almost all the natural gum left in the fiber.

The black silks were then attacked and an elaborate system of mordanting was introduced before the dyeing proper began. For instance, the silk can be dipped alter nately into solutions of iron and then of ferrocyanide of potash, thus forming Prussian blue in the fiber. Then the excess of iron can be converted by immersion in tannin solutions, such as Gambier or Cutch, into black tannate of iron, or ink, and finally, after perhaps a bath in chromium or tin salts, the final color is brought out by boiling in logwood extract. The silk is then brightened by boiling with good neutral Castile soap, and after drying and finishing the finished product may easily weigh two or even three times as much as the original raw silk did and still retain its strength, luster and elasticity.

The weighting of colored and bright silks did not proceed so rapidly, and it was not much more than ten years ago that by accident some French dyers discovered that by immersion in a strong bath of tin-chlorid (stannic chlorid acidified with some hydrochloric acid) the silk fiber would absorb a large percentage of tin salts with out necessarily losing luster or dyeing power or even strength. This at first was kept a secret, but its use gradually spread until now it is a very poor silk dyer who cannot weight his silk ioo or 150 per cent. without spoiling its immediate commercial value.

Without going into unnecessary details the process is somewhat as follows: The silk, after being degummed and thoroughly washed free of soap, is plunged in a bath of tin chlorid and kept there for some hours. It is then taken out and the loose tin salts are washed off in a tank of water (technically called a box) or in a washing machine. To further "set" the tin, the silk is then placed for a short time in a solution of phosphate of soda and again washed thoroughly. It has now gained from 15 to 25 per cent. of its original weight (3 to 4 ounces to the pound of raw silk). If further weighting is desired this treatment, first in tin chlorid and then in phosphate of soda, can be repeated three or four up to five or even six times, in creasing in weight with each immersion. Then a bath is usually given of silicate of soda, which adds a little weight, 2 to 4 of an ounce, and it is claimed benefits the luster and strength of the goods. Then after a final washing the silk is ready for the dyebath.

The weighted goods are dyed, dried and finished about the same as with the "pure dye" process, and the proud dyer can rejoice at returning to the honest manufacturer from 150 to 250 pounds of finished silk for every ioo pounds of raw silk (containing, by the way, 25 to 30 pounds of gum) which was sent in to the dyehouse.

This "tin-weighting" process is also applied to black dyeing, and enables the black dyer to build up his weight with tin salts instead of limiting him to iron, chromium, ferrocyanide of potash, tannin and logwood.

Properties of Weighted Silk.

It is scarcely necessary to point out that silk weighted to the extreme limit is hardly to be considered as the most durable and trustworthy of fabrics, even when dyed by the most expert workman. Silk dyed carelessly and weighted heavily is less valuable, liable to crack and wear away with the least provocation.

It may be worth while reminding some of my fair readers that the old test of a silk taffeta, "so thick and stiff that it will stand of itself," nowadays is anything but a proof of good quality. One or two manufacturers in this country have during the past two or three years revived the almost forgotten art of making and selling pure dyed goods, and one trouble that they experienced in disposing of their products, outside the high price, was the criticism that their silk felt so light and thin.

Tests for Weighted Silk.

At present it is almost impossible, at least in New York, to buy puredyed heavy silks. The writer, at any rate, tried hard this last autumn to find for some special experiments a piece of white taffeta which was not markedly weighted. After visiting not only depart ment stores but the very best dry-goods stores in the city, at all of which he was informed that no such material now existed, the best he could do was to find one make of silk where the organzine or warp was fairly pure, the tram being well weighted. Lightweight Japan and China silk dyed in the piece can still be procured with little or no weighting.

The test, known to all buyers in the trade, is a simple one. The threads of silk should be pulled and combed out, separating carefully the warp from the filling, and each of them touched with a lighted match. Pure silk burns fast and freely to the end, leaving little or no ash, while weighted silk burns slowly, leaving much residue, and if heavily weighted will not carry the flame at all.

The chemical analysis of weighted silk is not very satisfactory, and in general can hardly be made, excepting by a chemist expert in silk dyeing and weighting as well as in ordinary analytical methods.

Silk Dyeing by Amateurs and Craftsmen.

It is hardly necessary to point out that the above processes need skilled dyers and chemists to produce satisfactory re sults.

Craftsmen can, however, get quite satisfactory results by "pure dyeing" piece goods and even skeins with acid dyes, in a soap bath acidified with a little sulphuric acid, as described in the last article, although it is hard to finish the skeins with out instruction from a professional.

The Acid Dyes, however, are not always satisfactory on account of their behavior to moisture. The best ones are exceedingly fast to light and the range of shades is great, but the colors strip entirely and easily in hot soap baths, and, which is more objectionable, they generally bleed and stain when wet with even pure water.

Colors faster to washing, although not as a rule so fast to light, can be readily obtained by using the Salt or Direct Cotton Dyes, described in the August number of the Craftsman; these dye silk readily in a soap bath with the mixture, first, of a certain amount (three or four times as much as of the dyestuff) of salt or Glauber's salt and later of a little acetic acid. Silks dyod with these Salt Colors are "fast" but not "embroidery fast" that is, they will not stain in water or with light soaping, but cannot be put in the washtub and boiled with cotton goods without bleeding and staining the white goods.

To stand the latter test, the simplest method is to dye the silk with the Sulphur Dyes previously described, care being taken to avoid tendering the silk with the strong alkali of the sodium sulphide. To protect the silk from this it is necessary to use as little sodium carbonate and sulphide as possible, consistent with dissolving the dyestuff. Then, by using a large excess of dyestuff, the silk need be immersed for but a short time, and finally various chemicals can be used to protect the fiber.

Glucose is often used for this purpose. But, for full shades, the best way is to add sodium bisulphite to the bath, containing dyestuff and sodium sulphide, until the liquid is just about neutral.

To get the best results the reaction of the bath should be tested in the manner known to all chemists, with an alcoholic solution of phenolphthalein. This solution is colorless in the presence of acids or even when neutral, but turns pink or red with the least trace of alkali. After the dyestuff, dissolved in hot water with so dium sulphide and sodium carbonate, has been put in the dyebath, a solution of sodium bisulphite is added, little by little, stirring well until a drop of the liquid, spotted on a piece of blotting paper and touched with a drop of the phenolphthalein, remains colorless for a minute or two and then turns a light purple. If the purple color does not develop at all the bath is too acid and needs the addition of a little more sodium sulphide. If the color appears at once the bath is too alkaline, and more of the bisulphite should be added.

In a bath made up in this way silk can be warmed with impunity and by the use of plenty of dyestuff and the addition of two or three tablespoonfuls of salt to the bath after the dyeing has proceeded for some little time, full deep shades can be produced, which, after exposure to the air to oxidize them, can be washed in boiling soap baths without running or fading.

Of course, for lighter shades the bath need not be neutralized with so much care. Bisulphite should be added to diminish the alkalinity, and then the silk dyed as quickly and with as little heating as possible.

Black Dyeing for Craftsmen.

The process just described is of still greater importance as a means for getting satisfactory blacks on silk without the long, tedious, complicated and difficult process of logwood dyeing. Excellent sulphur blacks are on the market which will give very fair results even to the amateur dyer, and which offer the decided advantage of dyeing cotton and linen fibers in the same bath quite as deeply as they do the silk.

Of course, to get full shades of black, great care must be taken to have the bath the exact degree of alkalinity, and to get the full strength of the dyestuff. A good dye for this purpose is Thiogene Black liquid M.pat (Metz) for the use of which this process was patented.

Besides the Sulphur Colors, dyers some times use some of the Alizarine Colors, and, especially, of the new Salt or Direct Cotton Colors suitably fixed, for the production of blacks without the use of logwood.

The Alizarine Colors properly mordant ed give excellent shades on silk as well as on wool and cotton, which are among the fastest colors known both against light and washing. Their use, however, is too complicated to be of much value to craftsmen.

During the last three or four years the Salt Colors have been coming greatly to the front, and not only are used for colors but also for blacks upon silk with considerable success. To obtain a really good black it is necessary first to dye the silk thoroughly, as before described, with one of the Salt Colors, and then to fix it by the so-called diazotizing and developing process. This, however, is rather too delicate a chemical process for the average craftsman, and hence it hardly needs describing here.

Dyeing Silks.

Craftsman 4(?), 1909

By professor Charles Pellew, of Columbia University: Number VII

Some of my readers may have noticed that in the last article, on the Acid Dyes, no details were given about the dyeing of silk, although this fabric, along with wool, feathers, and other animal fibers, is almost universally dyed with colors belonging to this class. But silk is such an interesting and important textile and so unlike, in composition and character, all the others, that it has been thought advisable to devote a Trial article to its preparation and structure before touching on the dyeing.

Definition - varieties of silk

Silk has been defined as a "smooth, lustrous, elastic fiber of small diameter and of animal origin." As is well known, the ordinary silk of commerce is secreted or "spun" by the silkworm, the caterpillar form of a moth known as Bombyx Mori, the moth of the mulberry tree. These silkworms have been cultivated for thousands of years, but there exist in different parts of the world, notably in India and Japan, wild or uncultivated silkworms, derived from nearly related but not identical families of moths, and whose silk is collected in the forests by the natives, forming what is known in commerce as wild or tussore silk.

Of course, the silk from silkworms, cultivated and wild, is the only one yet produced on a commercial scale. But silk can also he obtained from other animals, notably from spiders, and from a peculiar shellfish, the pinna, found in the waters of the Mediterranean.

Silk from Spiders.

For a couple of hundred years it has been known that in certain tropical and semitropical countries spiders were found of such large size that their webs would furnish a fiber strong enough for textile purposes. In Paraguay and in Venezuela silken fabrics have been made in this way on a small scale for a long time.

During the last few years a similar industry has been started in Madagascar by the efforts of a French missionary, who invented a simple apparatus for confining the spiders and for extracting silk from them in fairly large quantities. The large spiders used for this purpose are extremely abundant in the forests and parks on that island.

The factory, as it was finally fitted up on the very edge of the forest, contains workshops for the spiders in the form of a large number of little pigeonhole cells, in which each insect is carefully shut in by a wooden guillotinelike holder, which fastens around its body, exposing the abdomen and separating it from the legs and head. The operators (native girls with very delicate, light fingers) then proceed to tap these spiders, drawing the silk from them by pressing them until the gummy mass exudes, and then drawing it off in fine threads and joining it to others which, together, are reeled off by a small wheel until the supply from the individual spider is exhausted. It is claimed that if carefuly treated the spiders are not injured by this process and if well fed can be tapped four or five times a month, giving some thousands of yards of silk each time. The thread thus formed is of a bright yellow color, extremely strong, and very brilliant and lustrous. It has been woven into cloth, making very beautiful material; and at the Paris Exposition in 1900 a piece of spider silk was shown, 18 yards long and 18 inches wide. Unfortunately, on the side of a commercial success, to produce this cloth some 25,000 spiders were required and it is estimated that the silk cost from $30.00 to $40.00 a pound. It is hoped that with experience the cost may in time be lessened until this silk can compete with ordinary silk on fairly equal terms.

Silk from the Silkworm.

As before mentioned, this can be divided into two parts, according to whether the silkworms are the cultivated or the wild varieties. In each case the silk is produced by the caterpillar spinning a covering or shroud, the so-called cocoon, around itself to protect it when in the form of the chrysalis or pupa, awaiting its transformation into the moth. The silk of commerce all conies from the worms of the moth known as Bombyx Mori, which during thousands of years has been studied and grown for this purpose. These worms feed upon the leaves of the white mulberry tree and cannot be successfully cultivated without that plant. The somewhat similar worms producing the various wild silks, or tussore silks, of commerce, live upon leaves of the oak, ailanthus, elm, castor oil plant and others.

History.

So far as we can tell, silk was first discovered and manufactured in China about 1700 B. C., a date corresponding in Biblical history to the time of the patriarch Joseph. From China it was exported to the great and wealthy empire of Persia, and from there was first brought into Europe by Alexander the Great after his defeat of the Persian king. Its origin, although known to and described by Aristotle, was for several hundred years a mystery. During the Roman Empire silken garments woven in Europe from Chinese silk imported by way of Persia were important and very highly prized articles of luxury. About 555 A. D., while commerce with. Persia was interrupted by warfare, two monks in the pay of the Emperor Justinian smuggled eggs of the silkworm and seeds of mulberry trees from China to Constantinople.

This was the origin of the European silk industry. Its cultivation spread rapidly to the various countries bordering on the Mediterranean, and by the 17th century was firmly established not only in Spain and Italy but also in France. Efforts were made to introduce it at this time into England, but without much success, and in 1622 King James I started the industry for the first time in the colony of Virginia in this country. Since that time numerous attempts have been made to develop the American silkworm industry, but with very little success, owing to the large amount of hand labor necessary to produce the material.

At the present time the very finest raw silk in the world is produced in the South of France, and next to that comes certain brands of Italian silk. The Japanese silk is more variable in quality, although steadily improving, while the Chinese silk, as a rule, is less satisfactory and more apt to be light and fluffy.

With regard to the consumption, it was estimated that in 1907 Europe used some twentyfive million pounds and the United States fifteen million pounds of raw silk, which at an average price of nearly 85.50 per pound amounted to over two hundred and eighteen million dollars.

It is universally agreed that the United States consumes more silk than any other country in the world. in 1906 the importations of raw silk into the country amounted to nearly sixty-five million dollars; of spun silk, over three million dollars, and of waste (cocoons, etc.) over one million dollars, making a total of sixty-nine million dollars. Besides this here were imported of manufactured goods over thirty-four million dollars, making the total importations for the year well over one hundred million dollars.

Preparation, Manufacture of Silk.

The full process of manufacturing silk, from the silkworms to the shop, may be divided into the following steps:
(1) Raising of the cocoon,
(2) Reeling or filiature.
(3) Throwing the raw silk,
(4) Stripping, weighting, dyeing and finishing the skeins,
(5) Weaving and finishing the fabric.

Raising the Cocoons.

The eggs collected from the moth are spread out on cardboard, kept warm and damp, and in to to 12 days hatch out into minute worms. These are freely fed with mulberry leaves and grow very fast, until at the end of four or five weeks they arc full grown and ready to spin. They are then transferred to wicker baskets, and proceed to fasten themselves to the walls at convenient places, and then to gradually enshroud themselves in a fine, closely woven web or cocoon by continuously pressing from the silk glands in their heads a thick, gummy fluid which hardens in the air.

This operation takes about five days, after which the worm changes to the state of pupa or chrysalis, and rests immovable inside the cocoon until after some fifteen or twenty days it changes to a moth. It then proceeds to eat, or rather dissolve by means of an alkaline secretion, its way out of the cocoon, cutting through the threads to such an extent that the silk is useless for reeling purposes, and can only be used for carding and spinning. Accordingly, only enough cocoons are allowed to ripen to furnish a new crop of eggs; the rest are carefully baked, so as to destroy the pup contained in them.

Reeling the Raw Silk from the Cocoon.

The amount of silk obtained from each cocoon is but small, and much of it is in the form of floss or waste, useful only for spinning. So it takes from two thousand to three thousand cocoons to furnish one pound of raw silk. The silk is reeled off by hand, after soaking the cocoons in warm water to soften the gum which fastens the fibers together. The threads from several different cocoons are combined by the operator into one continuous fiber, which is reeled off gradually, and as fast as one thread breaks or comes to an end another one is thrown in from another cocoon.

This furnishes the raw silk of commerce and consists of two different compounds. The most important is the fibroin or silk fiber, which is strong, elastic, with brilliant luster, insoluble in water and dilute acids, but readily soluble in alkalies, especially if hot and strong; but besides this, it contains from 30 to 45 per cent. of sericin, or silk gum, which is stiff and brittle, without luster, and, while softening in warm water, dissolves readily in hot soapsuds or warm alkaline solutions.

Throwing the Silk.

Silk differs from cotton, wool, linen and other textile fibers by being made of one continuous thread and not of a series of short threads which have to be twisted tightly together before they can be woven. So, instead of a spinning process, the raw silk is subjected to what is known as "throwing," in order to make the thread suitable for dyeing and weaving. For this purpose the raw silk is softened in hot water and soapsuds and several threads are combined together by twisting and supposition and reeled off into one thread of thrown silk.

Two main varieties of thrown silk are universally recognized in the trade. namely, organzine and tram. The organzinc is the thread used for warp. It is very strong and tightly twisted, with, as a rule, considerable luster. In some kind of weaving the luster of the material depends entirely upon the warp. The tram, on the other hand, constitutes the filling. It is usually more loosely woven, of thicker thread, and need not be either so strong or so lustrous. It is usually made of from two to five threads of raw silk and, of late years, has been generally greatly adulterated.

While this thrown silk has lost some of its original gum, it still contains some 2030 per cent. of sericin, or gum, which prevents it from having any luster, makes it hard to dye, and causes it to be too stiff for weaving.

Stripping or Degumming the Silk.

To extract this gum, the silk, still in skeins or hanks, is heated for some hours in a strong solution of (neutral) soap, and then washed well in other soap baths and in hot water until it is perfectly soft and has gained the proper luster. The soap containing the gum thus extracted, called `boiledoff liquor" or "soap gum," is carefully kept and used in dyeing colors.

After stripping, there are two lines of treatment, according to whether the silk is to be "piece dyed" or "dyed in the skein."

In piece dyeing the stripped silk is passed through a weak bath of acid, usually acetic acid, and then woven into goods of the desired quality. These goods are then dyed in the piece by being run through the dye bath until they are of the proper shade. The dye bath (for colors) is made by stirring the proper quantity of acid dyestuffs, the same as those mentioned in the last article, into a bath of boiledoff liquor, which is faintly acidified, or "broken," as the technical phrase goes, by the addition of some sulphuric acid. This boiledoff liquor has the property of laying the dyes on the silk evenly and thoroughly and is better for that purpose than any other medium. For amateur work, or where boiledoff liquor cannot be obtained, very fair results can be obtained with a strong bath of olive oil soap (Castile or NI arseilles soap), made acid with dilute sulphuric acid.

The term "breaking" the soap bath is very significant. The acid should be added drop by drop to the frothing soap bath until the bubbles disappear and a thin iridescent film of fatty acid rises to the top of the liquid.

After the piece goods are brought to the proper shade, they are then finished, usually by carefully rinsing in water to take away all traces of free acid, then by passing through a cold soap bath, often with a little olive oil emulsified in it, to increase the luster, and finally through a bath of weak organic acid, like acetic acid, to develop the so-called "scroop" or "feel" of the silk. When silk is washed in soap, or, especially, in even a weak bath of alkali, it becomes soft and clammy to the touch, and has no "life" or "snap" to it when dry. The passage through even a weak bath of acid develops the characteristic stiffness of the silk fiber, and causes it to give the peculiar rustling sound when pressed.

Skein Dyeing.

The silk dyers proper, who dye and finish their silk in skeins before weaving, consider the above process as very inferior, in skill and in results, to their own art. It is true that piecedyed goods arc usually rather light and thin in quality, and not, as a rule, as lustrous as the others, while they can only be produced in solid colors, or with patterns stamped or printed upon a background of solid color. On the other hand, it is much more difficult to heavily adulterate and weight piece-dyed goods, and hence the lack of weight has compensating advantages.

The treatment of silk in skeins has been developed to a high art by the skill of dyers and chemists throughout the world, and is not infrequently referred to as one of the triumphs of modern science. Whether the chemist who makes two pounds of silk appear from one, or far less than one, pound of raw material is entitled to quite the same rank, as a benefactor of the human race, as the scientific agriculturist that we have so often heard about, is perhaps open to question. But the products of his skill and labors are met with everywhere and I propose in the next article to discuss his methods with some detail.

27.5.22

Dyes from Camphor.

Manufacturer and builder 4, 1880

Dr. W. H. Gregg, of Elmira, N. Y., is reported to have succeeded in obtaining a new coloring principle from camphor, to which he gives the name of "Laureline." Thus far he has only succeeded in producing various shades of yellow from it; but he is reported to be engaged in certain experiments which he hopes will result in the production of carmine and scarlet. The chief feature of the new dyestuff which recommends it to the attention of textile manufacturers, is in the brilliancy and fastness of the colors.

It can be used upon linen, cotton and silk with no apparent difference in density and brilliancy, and goods thus dyed are said to be entirely unaffected by the ordinary tests to which they will be subjected in use. Boiling for hours in a strong soap solution barely turned the shade of a cotton sample. With indigo, a handsome green is produced.

The inventor is not yet prepared to give special details respecting the cost of producing the new dye, or of the precise methods of using it; but as regards the first item, he intimates that it will be one of the cheapest, and as to the second, one of the simplest coloring matters to make and apply. The textile journals speak in terms of great interest of the new discovery.

Lippumme loukkaamista.

Karjala 168, 23.6.1927

Kun siniristilippumme oli v. 1918 valtiopäivillä hyväksytty, lausuttiin ruotsalaiselta taholta vakuutus, että nekin, jotka eivät ole kannattaneet hyväksyttyjä värejä, tulevat lojaalisesti alistumaan lippuun ja antamaan sille kaiken sen kunnioituksen, joka sille luonnollisesti tulee. Samoin ovat useat johtavat ruotsalaiset tiimillään vahvistaneet sen vetoomuksen kansalaisille, jossa kehoitettiin hankkimaan jokaiseen kotiin tämä lippu ja viettämään sen päivää.

Mutta kuinka on asian laita todellisuudessa? Ulkomaisissa lehdissäkin on huomautettu, että matkustaja, saapuessaan meritse Uudenmaan saaristoon. ei luule Suomeen tulevansakaan, sillä kaikkialla liehuu huviloiden päällä punakeltainen lippu, tuskin missään Suomen valtakunnan kansallislippu.

Ja vielä pahempiakin loukkauksia tätä kansallislippuamme kohtaan on julkisuudessa kerrottu. Sellaiseen on tehnyt itsensä syypääksi itse Helsingin kaupunkikin. Kun se kaksi vuotta sitten piti juhlan sairaanhoitajatarkongressille, niin liehuivat siinä sinikeltaiset liput, eikä kansallislippumme. Helsingin pitäjän pohjoisen suojeluskunnan viime kesänä Tikkurilassa pitämästä juhlasta kerrottiin taasen, että siellä vedettiin valtakurtnanlipun rinnalle yhtä suuri punakeltainen vaate ja oli juhlakenttä muuten koristettu ainoastaan punakeltaisilla lipuilla. Kun suomalaiset suojeluskuntalaiset ja Lotat pyysivät moista liputusta muuttamaan, ei pyyntöä otettu kuuleviin korviinkaan, eikä näillä suomalaisilla ollut muuta neuvoa kuin poistuminen koko juhlasta.

Pietarsaaren Lotat pitivät keväällä Juhlan, jonka alkuvalraistuksista kerrottiin julkisuudessa, seuraavaa: Juhlasalin seinällä oli valtakunnan lippu ja sen alla suojeluskunnan lippu. Lottien puheenjohtaja repäsi valtakunnan lipun pois sanoen: "Näitä rääsyjä emme me tarvitse". Vaasasta kerrottiin aivan äskettäin, että siellä lastenpäivien kulkueessa ei ollut ainoatakaan valtakunnan lippua, mutta sen sijaan komeili siellä ylimpänä Ruotsin sinikeltainen lippu. Monia muitakin saman suuntaisia tapauksia on julkisuudessa mainittu. Ne kaikki ovat omiansa todistamaan, kuinka suuresti ruotsalaisemme halveksivat Suomea, Suomen valtakuntaa, suomalaisista puhumattakaan.

Tässä asiassa on yksi puoli, josta ehkä sietää huomauttaa. Se nimittäin, että ruotsalaisemme kehutusta korkeasta sivistyksestään huolimatta ovat täydellisiä moukkia mitä lippuasiaan tulee. He eivät näy käsittävän, että kaikkialla, vähimmän kehittyneittenkin kansojen keskuudessa kunnioitetaan valtakunnan lippua yhtenäisyyden, yhteenkuuluvaisuuden näkyvänä tunnuskuvana, että sitä eivät lonkkaa alemmallakaan kehitysasteella olevat. Meillä vain näyttää moinen olevan mahdollista.

Mitä on tehtävä? Ei kai muuta kuin saatava suomalaisten sydämiin yhä syvemmälle juurrutetuksi kunnioitus ja arvonanto valtakuntamme lippua kohtaan. Kun näin tapahtuu, tietää jokainen suomalainen myöskin tarkoin karttaa niitä tilaisuuksia, joissa esitetään halveksimista tälle lipulle. Ehkä tällainen menettely saa monet ruotsalaisetkin järkiinsä. Mitkään "kieltolait" eivät tässä ole paikallaan, kenties ehkä korkeintaan säädös, valtakunnan juurista juhlapäivistä, jolloin valtakunnan lippua on käytettävä.

Kummastuttavaa muuten on, että ruotsinkielinen sanomalehdistömme on näihin valtakunnan lipun loukkauksiin nähden asettunut aivan välinpitämättömälle kannalle.

Suomen lipun esihistoriaa.

Karjala 168, 23.6.1927

Kysymys Suomen lipusta on verrattain myöhäissyntyinen harrastus. Sen juuret ulottuvat ajassa vain 1860-luvun alkuun, siis niihin aikoihin, jolloin perustuslaillinen eliiinä maassamme elpyi. Tosin kyllä oli jo aikaisemminkin lippuasia meillä ollut esillä, vaikka ei täydellisesti siinä mielessä, jossa sitä myöhemmin käsiteltiin.

Lippuasia herätti meillä yleisempää huomiota v. 1848, jolloin Helsingin naiset lahjoittivat ylioppilaskunnalle lipun. Ensi kerran hulmusi se vapaana kuuluisassa kevätjuhlassa Gumtähden kentällä, jossa Cygnaeus piti alati muistettavan puheensa Suomen nimelle ja jossa Maamme-laulu vihittiin Suomen kansallislauluksi. Tätä ylioppilaiden lippua ihaillessaan varmaan jokunen läsnäolija alkoi ajatella, mikä merkittävä yhdysside ja tunnusmerkki lippu on kokonaiselle kansalle. Käin arvatenkin teki Sakarias Topelius, joka muutama vuosi myöhemmin koetti käytännöllisestikin toteuttaa Suomen oman lipun aatetta.

Se tapahtui kesällä 1862 hänen ollessaan kylpemässä Marstrandissa, Ruotsin länsirannikolla. Siellä oli muitakin suomalaisia kylpemässä ja he perustivat yhteisesti erikoisen suomalaisen venekunnan, jonka vene otti osaa kilpailuihinkin. Venekunnalla oli oma lippunsa, jonka väreinä olivat sininen ja valkoinen, nuo suomalaiset eivät näet tahtoneet Venäjän lipun alla purjehtia. Nuo värit sinisen ja valkoisen lienee Topelius ehdottanut, sillä hän oli jo paljon aikaisemmin eräässä novellissaan lausunut, että sininen ja valkoinen ovat meidän värimme, valkoinen talvisen lumemme ja sininen sitä kattavan taivaan tunnuskuvana. Ja tuo Marstrandin venekunnan lippu oli ensimäinen Atlannilla liehunut Suomen lippu.

Yleisemmän huomion esineeksi tuli lippukysymys v. 1863, jolloin virisi keskustelu siitä, millainen olisi Suomen oma lippu oleva. Tämän keskustelun aiheuttivat silloin vallinneet vapaammat olot ja pian kokoontuvat valtiopäivät, joilta toivottiin kaikenlaisia uudistuksia, kuten Suomen julistamista puolueettomaksi ja oman kansallisen lipun saamista. Näille toivomuksille antoi vauhtia se, että Suomi oli saanut niin paljon kärsiä venäläisen lipun suojassa Itämaisen sodan aikana ja kun juuri silloin oli Puolan kysymyksen johdosta sodan vaara niin uhkaava. Tehtiinpä valtiopäivillä anomuskin oman lipun saamisesta Suomelle, mutta siitä ei sallittu edes keskustelua.

Mutta sitä vilkkaammin keskusteltiin asiasta julkisuudessa. Tiukasti kiisteltiin siitä, mitkä värit olivat Suomen lipussa olevat. K.s. Dagbladin lippu keltainen risti punaisella sinireunustaisella pohjalla sai kyllä kannatusta, mutta suurin kannatus näyttää tulleen Topeliuksen sinivalkoisen lipun osaksi. Näitä paitsi ehdoteltiin monia muitakin väriyhdistelmiä. Mutta sittenkun Topelius kesäkuun 15 p. 1863 oli julkaissut lippulaulunsa, joka saavutti yleistä vastakaikua koko maassa ja jossa hän puolusti sinivalkeata lippua, saavutti se yleisemmän kannatuksen päättäen siitäkin, että sen jälkeen nähtiin sinivalkeita lippuja liehuvan kaikkialla maassa. Tämä lippulaulu, josta Topelius itse lausui, että se tahtoi vain olla laulu niinkuin monet muutkin sekaantumatta politiikkaan ja väripolemiikkiin, herätti huomiota ylemmissäkin piireissä. Tämän lippukiistan johdosta lausui Snellman Litteraturbladetissa: "Sellainen lippu merkitsee tunnustettua valtiollista itsenäisyyttä, oikeutta itsenäisesti alkaa sota ja päättää rauhasta. Oma lippu vain tuntemusmerkkinä on aivan toinen asia, mutta se ei tietystikään suojele mitään. Sen saamisella on arvonsa kansallistunteeseen nähden. Se voi myöskin hyödyttää kansallistunnetta." Mutta Snellmanin mielestä aika ei ollut sopiva kysymyksen esille ottamiseen ja hän toivoi runoilijaakin käsittävän sen.

Lippukiista taukosi vähitellen, mutta kokonaan seurauksitta se ei jäänyt. Varsinkin arvioidaan Topeliuksen lippulaulun vaikutus laajakantoiseksi. Kansallistunteessa alkoi näet juurtua käsitys lipun merkityksestä yhdistävänä tunnusmerkkinä, syntyi liputtamisen tapa, josta ei maassamme sitä ennen paljon tiedetty. Myöskin juurtuivat sinivalkeat värit yleiseen tietoisuuteemme kansallisväreinä. Milloin liputettiinkin, niin tapahtui se sinivalkeilla lipuilla, jotka kuitenkin olivat hyvin erilaisia.

Dagbladin punakeltainen lippu jäi unhotukseen. Nämä värit esitti lähes kolmenkymmenen vuoden kuluttua edellisestä lippukiistasta uudelleen joku vaakunatieteen tutkija perustellen ehdotustansa Suomen vaakunan väreihin nojautumalla. 1890 luvun alussa synryi tämän ehdotuksen johdosta uudelleen keskustelu Suomen lipun väreistä. Sinivalkea lippu oli jo syöpynyt niin syvälle tietoisuuteen, sitä oli alettu yleisesti käyttää kaikissa suurissa juhlatilaisuuksissa. että sitä ei voitu esitetyillä syillä saada syrjäytetyksi. Suomalaiset kansanainekset asettuivat päättävästi sinivalkean lipun puolelle, kun taasen ruotsalaisten myötätunto kallistui punakeltaisiin väreihin. Ja sen jälkeen on tämä lippukiista jatkunut, vieläpä tiukentunutkin niin, että vaikka meillä nyt on virallisesti vahvistettu sinivalkea ristilippu, käyttävät ruotsalaisemme mielenosoituksellisesti punakeltaisia lippuja siten ilmaisten, ettei lipputajunta eikä lippukulttuuri ole heidän keskuudessaan saanut jalansijaa, vaan ovat tässäkin vaikuttimena puolueintohimot ja halu saada tehdä kiusaa suomalaisille ja Suomen kansallisvaltiolle, joka heille on vastenmielinen.

Vastaisiin tapahtumiin nähden oli näillä lippukiistoilla kylläkin suuri merkityksensä. Ne näet valmistivat maaperää lopulliselle ratkaisulle. Ja samalla ne todistivat, kuinka syvästi omaa lippua kaivattiin. Sinivalkea lippu muuttui suomalaiseksi tunnukseksi kaikissa juhlatilaisuuksissa, kautta maan hulmusivat sinivalkeat värit. Mutta tällekin alalle ulottui Bobrikoffin aikana venäläinen sortovalta. Venäjän lipun käyttö tehtiin pakolliseksi, omat värimme kiellettiin. Määrätyinpä erityisellä ukaasilla milloin ja miten oli liputettava, pakotettiin hankkimaan Venäjän lippu. Tämä lippusorto kesti Venäjän valtakauden loppuun asti.

Seurasi sitten Venäjän vallankumous ja Suomen itsenäisyys. Nyt muuttui lippukysymyskin tärkeäksi valtiotehtäväksi. Suomelle oli saatava oma lippu. Vallankumouksen aikana oli tullut käytäntöön punainen leijonalippu. Suomen vaakuna punaisella pohjalla ja tämä lippu, jota jo suurlakon aikana oli jossain tapauksessa käytetty, hurmasi monen mielet. Syntyi vilkas keskustelu siitä, millainen lippumme oli oleva.

Senaatti asetti 1917 erityisen lippukomitean laatimaan ehdotusta Suomen lipuksi. Tämä asettui puoltamaan punakeltaista lippua kansallislipuksi, siinä olisi kuitenkin yläkentässä tangon puolella yhdeksän valkoista ruusua. Valtiolipuksi ehdotti komitea punaisen Leijonalipun. Senaatti kannatti valtiolipun ehdotusta, mutta kauppalipussa se koetti kulkea keskitietä ehdottaen punakeltaiseen lippuun sinivalkoisen reunuksen. Ehdotus annettiin tammikuulla 1918 eduskunnalle, mutta joutui lopullisesti käsiteltäväksi vasta kapinan jälkeen. Jo lähetekeskustelussa törmäsivät sinivalkoisten ja punakeltaisten kannattajat vastakkain kumpikin omaansa puoltaen. Perustuslakivaliokunta asettui miltei yksimielisesti puolustamaan sinivalkeata lippua. Yksi ainoa jäsen ilmaisi vastalauseessa eriävän mielipiteensä asettuen punakeltaisen puolelle. Kapina oli niin muokannut mielipiteet. Ja yleensä koko maassa olikin sinivalkoisella lipulla yleinen kannatus. Eduskunta ratkaisi asian toukokuun 26 p. päättäen Suomen lipuksi sinivalkean ristilipun, jonka keskelle valtiolipussa oli tuleva Suomen vaakuna. Tämä lippu vahvistettiin toukokuun 29 p. julkaistulla asetuksella.

Niin oli tämä lippuasia saanut lopullisen ratkaisunsa, kansan suuren enemmistön jyrkästi kannattamat sinivalkeat värit vahvistettu kansallisväreiksemme.

Yleisöltä. Suomen vaakuna ja E. M.

Kaleva 100, 8.5.1918

Wuodesta 1863, jolloin runoilijamme Sakari Topelius sai jonkun werran kannatusta siniselle ja walkoiselle Suomen lippuwäreiksi on lippukysymyksemme ollut riidanalainen. Muita kenenkään muun kuin E. M:n päähän ei tietääkseni wielä ote pälkähtänyt muuttaa waakunaamme; pieteetti wanhaa, kunniakasta waakunaamme kohtaan, jonka johdassa ja wäreillä Suomalaiset niin urheasti kautta monen wuosisadan owat taistelleet sekä kotoisilla tantereilla että wierailla werikentillä, on ollut niin ehyt, että se on jätetty rauhaan. Kuta kaumemmas menneisyyteen waakunansa kukin kansa woi ulottaa, sitä kunniakkaampaa on se kansalle. Mutta kun nyt uutta Suomea luodaan, tuntuu allekirjoittaneesta siltä, kuin jos E. M. puolestaan haluaisi luoda sen niin uudestaan, ettei wanhaa rakennusainetta saisi olla olemassakaan, wanhat muistot eiwät siinä saisi sijaansa ollenkaan. Kun tämä mielestäni ei ole oikein, haluan osaltani kosketella E. M:n esittämää asiaa.

E. M. lähtee ratkaisemaan lippukysymystä sillä, että waakunamme wärit owat muutettawat siniwalkoisiksi; silloin tulisi lippukin itsestään olemaan siniwalkoinen. Tämä lähtökohta on wäärä. Lippukysymys on ratkaistawa heraldiikan pohjalla, eikä suinkaan heraldisia asioita wäänneltäwä lippumääritelmän mukaan; waakunawärit, s. t. s. wanhan waakunamme pääwärit owat punainen ja keltainen, hopean (=walkoisen) ja teräksen (=sinisen) ollessa aiwan toisarwoisessa asemassa. Sitäpaitsi on waakunamme 337 wuoden wanha, kun siniwalkoinen lippu on ollut käytännössä, mutta ei sitäkään yleisesti ja poikkeuksetta, ainoastaan 55 wuotta! - Kruunuakaan waakunassamme ei E. M. pidä nuorelle tasawallallemme sopiwana, mutta mielestäni tähänkään ei wielä woida kajota, sillä ratkaisematta on wielä, mikä maamme lopullinen hallitusmuoto on. Meillä on paljon rojalistejä, jos on tasawallankin kannattajia. Jättäkäämme siis jo tältäkin kannalta waakunamme rauhaan ja antakaamme tulewaisuuden osoittaa, onko kruunu leijonan päästä riisuttawa wai eikö. Mutta kun npt waakunasta oli puhe, niin wilkaiskaammepa E. M:n waakunaa. Kun leijonaa meillä ei luonnossa ole olemassakaan, pitää E. M. sitä waakunassaankin luonnottomana. Onkos meillä sitten jääkarhua, jollaisena E. M:n walkoista karhua ehdottomnsti on pidettäwä? Wi ole sitäkään eläintä meillä! Jättäkäämme kuiteinkin leikki sillensä ja tunnustakaamme, että niin leijona kuin jääkarhukaan eiwät edusta mitään Suomessa löytywiä eläimiä, waan on edellinen heraldisesti uljuuden ja rohkeuden symbooli, jälkimäinen näissä "uudesta syntymisen" merkeissä myös joku woiman wertauskuwa.

E. M:n ehdoitusta waakunan ja sen wärien muuttamisesta on pidettäwä epäonnistuneena. Toinen asia on, kuinka on, kuinka onnistunut siniwalkoine lippu on. Allekirjoittanut rohkenee pitää näitä wärejä epäonnistuneina. Niiden historiallinen alkuperä on, kuten sanottu aiwan toisarwoinen punaisen ia keltaisen rinnalla. Hopeiset ruusut ja teräksen sininen miekka eiwät ole wallitsewia wärejä waakunassamme. Wielä wähemmän sekään, että walkoinen kuwaa talwiemme lunta ja sininen meidän järwiemme wäriä, sopii olla määräämässä lippuwärejämme. Onhan muissakin maissa lunta, meillä walitettawasti noin puolet wuodesta, jolloin sitäpaitsi järwemmekin owat walkoiset. Siniwalkoinen yhdistelmä on sitäpaitsi mieto. Olen nähnyt näitä siniwalkoisia lippuja ennen ja nyt; kauwemmaksi ei niistä näy muu tuin walkoinen (antautumislippuko?), sinisen kadotessa niin pilwisellä kuin kirkkaallakin säällä. Merenkulussa tämä woi aikaansaada häiriöitä. Sen sijaan näkyy punainen ja keltainen kauwas millä ilmalla hywänsä. En silti tahdo sanoa, että esim. leijonakippu, niin komea kuin se onkin, olisi onnistunut, sillä, 1:ksi on se waikeasti walmistettawa, ja 2:ksi ei leijonaa siitä eroita, kun lippu riippuu pitkin tankoa. Punakeltainen ristilippu olisi parempi, ja kun Ruotsin. Norjan ja Tanskan liput owat ristilippuja, niin olisipa syytä, että neljännenkin pohjoiswaltion lippu ulisi ristilippu. Wielä paremmin eroittauttuisiwat wärit, jos keltainen ja punainen olisiwat päällekkäin tangon poikkisuuntaan. Punainen wäri herättää kyllä wastenmielisyyttä nykyään, syystä että punaiset maankawaltajat owat häwäisseet waakunaamme, ottamalla sen pääwärin omakseen, mutta tämä wastenmielisyys katoaa, jos muistamme, että nuoret soturimme ostiwat punaisella sydänwerellänsä maansa wapaaksi ja itsenä[i]seksi. Ja jos punaista wäriä kammotaan, niin pitäisi kai kaikki maalaistalot (ja onhan niitä punaisia talosa kaupungeissakin) maalata waikkapa sinisiksi. Tuollaisia wastenmielisyyksiä woimme hakea siniwalkoistakin wärirhdistelmää wastaan. Eikö Wenäjän sotalippu ole siniwalkoinen (Andreaksen risti)? Eikö siniwalkoinen lippumme yhtä hywiu woisi olla 2/3 Wenäjän kauppalipusta, josta punainen alaosa on repäisty pois j. n. e. loppumattomiin? Se taas, että meillä, warsinkin muutamilla paikkakunnilla on enemmän käytännössä siniwalkoisia lippuja, johtunee osittain siitä, että punaista ja keltaista ei ole ollut riittäwästi saatawissa.

Tehtäköön lippumme historialliselle pohjalle, älköönkä lähtekö sitä kysymystä ratkaisemaan wäärästä päästä, tekemällä uusi waakuna, sillä tämänlainen menettely olisi Suomen kunniakkaan menneisyyden loukkaus. Ratkaistakoon lippukysymyksemme maan hallituksessa, jossa sekä tiede että käytäntö on edustettuna asiaa pohtimassa; älkäämme riidelkö loppumattomiin sellaisista asioista, muuten nauraa koko maailma meidän pikkumaisuuksille ja epäjohdonmukaisuuksille.

- B

***

Herra B:n ylläolewa kirjoitus, jonka olen saanut lukea, ei anna aihetta minun puoleltani pitempään polemiikkaan. Herra B. ei näy tuntewan kansan mielipidettä tässä asiassa.

- E. M.

Liput liehuwat.

Kaleva 100, 8.5.1918

Tampereelle saapuneet matkustajat kertowat, että lukemattomat liput owat liehuneet pitkin rautatienwarsia Pohjanmaalta Tampereelle saakka kewään ja saawutettujen woittojen merkkeinä. Wärit owat olleet kautta koko maaseudun siniwalkoinen, kaupungeissa sekaisin siniwalkoisia ja punakeltaisia. Wilkas keskustelu on ollut käymässä siitä, mitkä wärit lopullisesti tulewat kansakunnan wirallisiksi wäreiksi. Jääkärit puolustawat oman lippunsa wärejä, jotka he jo Saksassa ollessaan saattoiwat liehumaan ja sittemmin owat Suomessa werellään wahwistaneet.

Editor's Scientific Record: Preparation of Zinc Paint.

Harper's new monthly magazine 254, JUL 1871

A useful hint in regard to the preparation of paint with oxide of zinc instead of white lead will be found in the following instructions, published in a German journal: The ordinary boiled linseed-oil should be replaced in the mixing operation by one prepared by gently boiling two hundred pounds of the raw oil for five or six hours, then adding about twenty-four pounds of coarsely broken lumps of binoxide of manganese, and continuing the boiling operation for about ten hours longer. In this manner a very quickly drying linseed-oil is obtained, which is eminently fit for the purpose of being used with zinc-white and other zinc colors. According to the writer of the article, much depends upon the use of old linseed-oil, and also upon the pains taken wjth the boiled oil, which, unless carefully kept from the contact of the air, becomes thick in a very short time. The boiled oil so prepared is not to be used alone in painting with zinc-white, but must be mixed with from three to five per cent, of raw linseed-oil while the paint is being mixed together.

Editor's Scientific Record: Use of Soluble Glass in Painting.

Harper's new monthly magazine 254, JUL 1871

Our exchanges still continue to suggest new applications of water-glass in the arts; but especially in painting, where it appears to furnish a means of applying certain colors to fresh wood or clean iron in a most efficient manner, and at a very slight cost compared with oil. It can also be used advantageously for painting houses, basket-ware, decorations for theatres, etc., and is especially suitable in the latter case, as it renders wood incombustible to a certain extent, instead of increasing the danger from fire, as with oil paint. Care must, of course, be taken to use only such mineral colors as are not decomposed by the glass, such as ultramarine, chrome-green, Nuremberg-green, yellow and red earth, ochre, green-earth, terra de Sienna, etc. In coating paper with this paint, a little glycerine may be added to prevent its breaking. Coralline, pon-cean, and Vesuvine have also been used to ad. vantage in connection with soluble glass.

Editor's Scientific Record: Preparation of White Lead from Galena.

Harper's new monthly magazine 254, JUL 1871

Experiments are now being prosecuted to test the value of an invention for preparing white lead direct from the ore. For this purpose ordinary galena is treated in an ore-crusher, next roasted in an ordinary desulphurizing kiln, and then mixed with carbon (preferably in a state of finely washed dust of anthracite coal) in the proportion of half and half. The mixture is next to be heated in a compound oxidizing furnace, when dense white fumes of vapor will pass off. These are conveyed into a separate chamber or receptacle, where the vapors are strained through screens or bags of muslin or ether fabric, or are allowed to deposit by being slowly passed through an extended chamber, in the way lamp-black, oxide of zinc, etc., are usually collected.

Nytt sätt att färga med svart anilin.

Industri-vännen 11, 1.8.1891

Härtill användes en blandning af någon anilinsaltlösning och en lösning af sådana substanser, hvilka tillsammans med de för oxidation af anilin vanliga reagentierna, framförallt kromsyrade metalsalter, ögonblickligen koagulera till en olöslig förening och tillföljd deraf rycka med sig anilinsaltet och fästa det på trådarne. Ett sådant förhållande visa proteinämnena: albuuim och kasein samt de med dem nära beslägi ade djurlimmen glutin och chondrin. Man bereder exempelvis af lim en 10%:tig lösning och tillsätter anilinklorhydrat. Blandningen blir strax klar och förblir till och med i köld tunnflytande. I denna doppas varorna, som skola färgas svarta, derpå urpressas de och behandlas så antingen strax eller efter obetydlig torkning med en Lösning af kromsyra eller något dess salt samt järn- och kopparoxidsalter med eller utan andra oxidationsmedel.

Dyeing Wool Aniline Blue

Harper's new monthly magazine 259, DEC 1871

The following method is recommended for dyeing aniline blue upon wool. The quantities given are sufficient for twenty yards. Three-quarters of a pound of Marseilles soap are dissolved by boiling, and when cold and sufficiently diluted with soft water, the goods are soaked in the liquid and well wrung. They are then placed in a bath of hot water acidulated with sulphuric acid, to which the coloring solution is added in accordance with the shade required. This solution consists of an ounce and a half of aniline blue in a pound and a half of alcohol of 90 per cent. Rinsing, drying, pressing, and, when found suitable, sizing with a little glue, finish the process.

Extraction of Aniline Dyes from Fabrics.

Harper's new monthly magazine 259, DEC 1871

Among the problems connected with the art of dyeing, one of much importance is the best method of extracting aniline colors from cloths without injuring the fabric, especially those which it is desired to dye anew; and to solve this Dr. Reimann, an eminent authority on these subjects, publishes a detailed paper in his Dyer's Journal.

For this end several methods present themselves, the first referred to being the use of chlorine, which, however, is only applicable to cotton — this agent, whether in the form of gas, or of chloride of lime, being excluded when we have to deal with substances consisting principally or partially of wool. The simplest method of accomplishing the object in this instance consists in digesting the fabrics for a sufficient length of time in alcohol of 90 per cent., which usually completes the decolorization in a short space of time. The same alcohol can be used several times in succession, and can afterward be purified by rectification or redistillation, so as to involve but little loss. The work is best done in a well-covered copper kettle, which is to be set in boiling water. A little hydrochloric acid may be added if the articles are not too delicate, thereby increasing the solubility of the aniline colors.

Still a third method is based upon the fact that all the aniline colors pass into given uncolored combinations when brought into contact with hydrogen. Thus fuchsin red is almest immediately decolorized when hydrogen is developed in its solution — the same taking place with let, blue, and green. This priuciple has long been applied in the socalled etch printing, iu which the aniline colors are extracted in particular parts of the pattern by means of the hydrogen. This is done by laying on a sheet of metallic zinc, with water and the proper sizing. Water consists of hydrogen and oxygen; the metallic zinc takes the oxygen from the water, and the hydrogen developed renders the aniline tints colorless. After this it is only necessary to rinse out the fabric in order to extract they colorless combination

.

Again, by saturating the substance to be deprived of its aniline dye with a feeble acid, such as vinegar or muchdiluted hydrochloric acid, and sprinkling the whole with puedered zinc, the color will be removed, especially if the fabric be slightly heated. This process is, however, much too complicated; and instead cif it we can better use liquids which will give off hydrogen, and tints have a reducing influence. Such a liquid we find in the solution of chloride of tin, usually known as the salt of tin. This must be of the very best quality to be efficacious, rind in external appearance should be of a white color, and composed of clear, dry, and tolerably transparent crystals. A solution of such a salt of tin should be placed in a stone vessel and diluted until it can not injure the fabric (about one to two degrees B. of strength), and some leaves of tin-foil placed at the bottom of the vessel. The fabrics, previeusly rendered perfectly free from dirt or grease, are to be placed in the solution and the vessel covered, the whole being then heated by immersion in boiling water.

As soon as the decolorization has been accomplished the cloth is to be taken out and rinsed in clean water, previously warmed. Generally a new fabric should be left in the hot solution from a quarter to half an hour, and the vessel then he set aside to cool; after which the color will be found to have vanished completely.

There still remain instances, however, in which Crell this efficient method does not entirely accomplish its object; and the last resort, which is absolutely certain and never-failing, is to the cyanide of potassium. This, however, is a deadly poison even in a very small quantity, and the utmost precaution must be adopted in using it. The operator must be certain that he has no sore or cut on the hand, fLi contact with the liquid in that case would be extremely dangerous, although while the skin remains perfectly sound no evil effect will be produced by contact. A stone vessel is to be selected, in which a small quantity of cyanide of potassium is to be introduced, and but water poured upon it, so as to make a solution of one-half to one degree B. Care must be taken not to inhale any of the vapor of the solution. The whole is to be stirred well with a long and strong glass rod, and the operation conducted in the open air, so that no harm may result from the condensation of the vapor. Tile fabric in question, previously well cleaned, is now placed itt the vessel, and pushed under the liquid with the glass rod, and the top of the vessel laid on.

It will he advisable to adopt some method to keep the solution warm, such as immersing the stone vessel in a wootleu tub properly supplied with steam or hot water. Should the vessel crack and the liquid leak out, it would in this instance become diluted with the surrounding water, and thus be less dangerous. After a short time the lid should be removed by taking it off at the end if a long handle, allowing the vapors to IlltSS of before the operator comes near. By means of the glass rod the cloth is to be lifted, and if not entirely white, is to be replaced and theprocess continued still longer. When finished the cloth is to be transferred by means of the glass rod to a large vessel containing hot water, and stirred around for a time, then removed and rinsed off. The solution of the cyanide of potassium can be used several times ithout losing its puwer, especially if a solution of sulphate of iron be mined in occasionally, producing a deposit of Berlin blue.

We give only an abstract of the article of Dr. Heimann, referring our reader to the original for further details. Throughout the whole paper injunctions are continually laid upon operators to avoid very carefully the inhaling of the fumes of the solution, or touching it in any way except through the intervention of the glass rod.

Uusia saavutuksia sielutieteessä.

Iltalehti 223, 27.9.1920

Maailmansota on psykologiselle tutkimukselle ollut tavattoman merkityksellinen. Onhan luonto siinä jättiläismäisessä mittakaavassa tehnyt ihmisolennolla kokeita, joka suuntaan jännittänyt tämän mahdollisuuksia äärimmilleen. Prof. Sternin tutkimuslaitos sovellettua psykologiaa varten on äskettäin ruvennut julkaisemaan tieteellisellä järjestelmällisyydellä ja tarkkuudella keräämäänsä aineistoa sodan "psykografiaan", joka kuvaa sodan erilaisten vaikutteiden alaiseksi saatetun kaikkia vaihtelevia ilmauksia. Niiden perusteella saadaan käsitystä siitä, millä tavalla inhimillinen persoonallisuus todellisuudessa on reagoinut sodan välittömiin vaikutteisiin.

Vielä suurempi tieteellinen mielenkiintoisuus on ehkä kuitenkin eräillä toisilla tutkimustuloksilla, joista niinikään saadaan kiittää maailmansotaa. Luonto on näet tässä, käyttämällä aineistonaan eläviä ihmisaivoja, tehnyt suuren joukon kokeita, jalka ovat analogisia niiden kanssa, mitä fysiologit jo useamman vuosikymmenen ajan ovat tehneet eläimillä, leikatessaan näiden aivoista pois milloin minkä osan ja tarkastaessaan tämän "ekstinpatsionin" vaikutuksia. Kiväärinkuula tai granaatinsirpale saattaa, kun se "oikealla" tavalla kohtaa uhrinsa, leikkausveitsen terävyydellä poistaa hänen arvioistaan rajoitetun alueen. Niissä tapauksissa, joissa uhri tämän raa’an operatsionin jälkeen jää eloon, se osoittaa, poistetun aivoalueen fysiologisen ja psykologisen merkityksen.

Kaikkein pisimmällä on eksaktinen kokeellis-psykologinen erittely päässyt näköhavaintojen alalla. Nykyään tiedetään, että sen jälkeen kuin näköärsytykset ovat saapuneet aivokuoren sisäpinnalla olevaan "fissura calcairina’an", jossa alkeelliset näköaistimukset viriävät, ne vielä kulkevat useampien aivokuoressa toimivien laitteiden kautta, ennenkuin muodostavat maailman optillisen havaintokuvan. Mainitut laitteet muokkaavat alkeellisia näköaistimuksia sillä tavoin, että resulteeraava havaintokuva hyvin tuntuvasti poikkeaa siitä kuvasta, joka meille pelkästään verkkokalvon ärsytyksen perusteella esiintyisi. Toisin sanoen, ma näemme maailmaa yhtä paljon aivoillamme kuin silmillämme. Tämä koskee esineiden etäisyyttä, kokoa, muotoa ja väriä. Esim. viimemainittuja ei kukaan normaali täysikäinen näe läheskään sillä tavoin kuin hänen verkkokalvon ärsytyksen perusteelta pitäisi ne nähdä. Tarkat mittaukset osoittavat, että jos kirjan painettua sivua pidetään auringonvalossa, niin kirjainten painomuste heijastaa silmään viisikymmentä kertaa enemmän valoa kuin itse paperi hämärässä. Jos siis näkisimme värit verkkokalvon ärsytyksen mukaisesti, täytyisi paperiin hämärässä näyttää 50 kertaa tummemmalta kuin kirjasinten päivänvalossa. Todellisuudessa näyttävät kirjaimet aina mustilta ja paperi aina valkoiselta - me siis näemme esineet likipitäen siinä värissä, jonka pidämme niin "todellisena" värinä. Jos katsellaaln neliönmuotoista paperipalasta, näyttää se joka suunnassa, jossa sitä pidämme, likipitäen neliönmuotoiselta, vielä silloinkin, kun verkkokalvon kuvassa sen vastakkaisista kulmista toiset ovat 45°, toiset 135°; kulmat näyttävät silloinkin likipitäen yhtä suurilta.

Millä tavalla puheenalaiset laitteet, jotka naköärsytyksiä muokkaavat, ovat fysiologisessa ja psykologisessa suhteessa rakennellut, siitä on olemassa eri teörioja, mutta todennäköistä on, että ne ainakin ihmisellä syntyvät yksilöllisen kehityksen, kuluessa kokemuksen vaikutuksesta.

Kun nyt kiväärinikuula tai granaatinsirpale osuu ihmisaivojen näköalueeseen ja tuhoaa tästä tarkasti rajoitetun osan, sattuu tietysti toisinaan, että potilas tulematta sokeaksi menettää yhden tai useamman puheenalaisista näköhavaintoa palvelevista laitteista. Hän näkee silloin maailman tykkänään toisella tavalla kuin normaali täyskasvuinen ihminen. - Siitä seuraavassa muutamia esimerkkejä.

Frankfurt am Mainissa on maailmansodan aikana ja sen jälkeen toiminut aivopatologisten tapausten hoitolaitos, joka on asettunut yhteyteen saman kaupungin yliopistossa olevain erinomaisesti varustetun psykologiisen tutkimuslaitoksen kanssa. Psykologien ja lääkärien yhteistoiminta on näet näissä tapauksissa ollut erikoisen tärkeä siksi, että toisaalta puheanalajsia havaintohäiriöitä ei voida eksaktisella tavalla tutkia muuten kuin käyttämällä niitä korkealle kehitettyjä menettelytapoja, joiden avulla eksperimentaalipsykologia on selvitellyt vastaavat normaaliset toiminnot, toisaalta taas nämä häiriöt luonnollisesti ovat yhteydessä mitä moninaisimpien puhtaasti ruumiillisten häiriöiden kanssa, rämän yhteistoiminnan tuloksena on jo ilmestynyt useampia tutkimuksia sisältävä Gelbin ja Goldsteinin julkaisema sarja, joka kuuluu kaikkien aikojen mielenkiintoisimpaan psykologiseen kirjallisuuteen.

Normaali ihminen näkee useimmissa tapauksissa hänen näkökentässään esiintyvät värit n.s. peiteväreinä ("oberflächenfarben"), s.o. väri ainoastaan näyttää peittävän esineen pinnan ilman että värillä itsellään on mitään näennäistä syvyyttä eli paksuutta. Peitevärien näkemisessä on puheenaolleilla aivoissa toimivilla laitteilla suuri osuus. Kun näitten laitteitten toimima häiriintyy, järkkyy myöskin esineiden ja värien havainnollinen yhteenkuuluvaisuus, kuten esim. seuraavassa merkillisessä tapauksessa.

Potilas sijoitti tummemmat ja tehoisammat värit likemmäksi itseään kuin vaaleammat ja vähemmän tehoisat. Kun potilaalle esitettiin sarja harmaita papereita, vaaleista tummiin, tai joukko värillisiä papereita, ja kehotettiin häntä osoittamaan, missä kohden hänestä yksityiset värit näyttivät olevan, ei potilas osoittanut itse paperien pintaa, vaan kohtaa avaruudessa, joka oli varsin huomattavassa etäisyydessä papereista itsestään. Esim. loistavan punainen väri näytti potilaan mielestä sijaitsevan noin 8-lO sm. paperin pinnan edessä, vähemmäin tehoisat värit näyttivät olevan paperia likempänä. Tästä seurasi, että jos punainen levy pantiin valkoisen viereen, näytti edellinen paksummalta kuin jälkimäinen, tai että kun joukko eri tummia harmaita papereita pantiin järjestyksessä vierekkäin, ne näyttivät muodostavan ikäänkuin portaat. Kun potilasta kehotettiin koskettamaan hänen edessään olevia harmaita tai värillisiä papereita, esiintyi jotakin varsin omituista. Potilaasta näytti, kuin täytyisi hänen pistää kätensä värin "sisään", ennenkuin hän saattoi koskettaa paperin pintaa. Käsi näkyi tällöin ikäänkuin asianomaisen värin läpi. Värien erilainen "paksuus" vaikutti, että eriväriset esineet näyttivät hänestä omituisella tavalla vääntyneiltä. Esim. kuutio, jonka sivut olivat eriväriset, ei näyttänyt ollenkaan säännölliseltä kuutioita, sen eri sivut olivat milloin paisuneet, milloin sisäänpainumeet. Samoin oma ruumis. Mustissa saappaissaan näyttivät jalat kummallisen paksuilta, paisuneilla. Häiriö aiheutti potilaalle paljon hankaluutta jokapäiväisessä elämässä. Kun hänen esim. piti asettaa lasi tummalle pöydälle, päästi hän san helposti kädestään liian aikaisin, koska hän sijoitti pöydän tumman pinnan liian lähelle itseään.

Merkillistä oli tässä potilaassa vielä mm. se, että hän kuvatusta häiriöstään huolimatta näki esineet likipitäen "todellisissa" väreissään, ei siis verkkokalvon ärsytyksen mukaisesti. Tämä on tieteellisessä katsannossa tavattoman tärkeätä siksi, että tähän saakka on poikkeuksetta oletettu, että sama aivolaita eli psykologinen mekanismi, jonka toimintaa saamme kiittää siitä, että näemme värit peiteväreinä, vaikuttaisi sen, että näemme värit likipitäen "oikein".

Toinen esimerkki. Eräältä potilaalta oli granaatinsirpale hävittänyt suurimman osan aivojen näköaluetta, mutta omituisen sattuman kautta säästänyt itse fissura calcarinan, niin että potilas ei ollut sokea. Mutta häneltä olivat miltei tyystin hävinneet kaikki korkeampaa näköhavaintoa palvelevat laitteet. Hänessä esiintyi uskomattoman radikaalisessa muodossa xt.s. "sielunsokeus" eli visuaalinen agnosia, jolloin potilas näkee, mutta ei käsitä kaikkea, mitä näkee. Tämän tapauksen kuitenkin erotti monista aikaisemmin tunnetuista sielunsokeuden tapauksista se omituisuus, että puheenalainen potilas yhdellä ehdolla käsitti, mitä hän näki: jos hän saattoi silmillään seurata esineiden ääriviivoja. Optilliseen käsittämiseen välttämättömät reproduktionit virisivät hänessä vasta silmäliikkeiden välityksellä. Potilasta tutkivat psykologit tietysti halusivat kaikin mokomin tietää, minkälaiselta maailma näyttä hänen silmissään, ja jotta hänet estettäisiin tekemästä silmänliikkeitä ja saataisiin kuvaamaan näkömaailmansa sellaisena kuin se hänelle esiintyi alkeellisten näköaistimustensa perusteella, antoivat tutkijat hänen synnyttää silmiinsä eri esineistä negatiivisia jälkikuvia, joita verkkokalvon väsymyksen vaikutuksesta viriää, kun kauan tuijottaa yhteen kohtaan, ja jotka eivät siedä silmänliikkeitä. Kun potilas tämän menettelyn kautta kerran oli oivaltanut, mitä häneltä tahdottiin, voitiin jälkikuvat jättää pois, ja potilas kuvasi, miltä maailma näyttää sellaisen ihmisen silmissä, jonka aivoissa mitkään korkeammat psykologiset mekanismit eivät näköaistimuksia muokkaa. Kuvaus oli monessa suhteessa hyvin merkillinen. Kun potilaalle esim. näytettiin erilaisia säännöllisiä kuvioita, kielsi hän jyrkästi, että se, mitä hän näki, sellaisenaan, s.o. ilman että hän ryhtyi tulkitsemaan sitä silmänliikkeiden välittömien muistikuvien avulla, oli kolmioita, neliöitä j.n.e., mitä hänelle todellisuudessa näytettiin. Vaikka hänen varsinaisissa näköaistimuksissaan ei ollut mitään vikaa, selitti hän esim., että näkemänsä ympyrän ja neliön välillä ei ollut mitään oleellista eroa. Kävi ilmi, ettei hän sillä tavoin kuin normaali-ihminen koneellisesti tekee, yhdistänyt näköaistimuksiaan määrätyiksi "hahmoiksi" ("Gestalten"), vaan ne pysyivat kaoottisina, epä[mää]räisinä.

Sama potilas ei myöskään koskaan nähnyt liikettä. Hänen ohitseen kiitävä juna näytti ensin olevan muutaman kymmenen, sitten muutaman metrin päässä, sitten hänen vieressään, kaikki liikkuvat esineet näyttävät hyppäyksittäin siirtyvän asemasta toiseen, mutta itseliikuntoa, tasaista siirtymistä hän ei koskaan tajunnut, muuta kuin tuntosaistinsa alalla.

Näiden vaarinottojen sanaton psykologinen mielenkiintoisuus perustuu seuraavaan.

On jo jonkun aikaa psykologien kesken erinäisistä teoreettisista syistä oletettu, että sielunelämäin kaikilla aloilla esiintyy n.s. "hahmoja" ("Gestalten"), joille on ominaista, että kuin yksinkertaisemmat ainekset niiksi yhtyvät, syntyy aina jotakin enemmän, kuin pelkästään näiden ainesten summa, syntyy n.s. "hahmokvaliteetti". Tyypillisenä esimerkkinä mainitaan säännöllisesti musikaalinen sävel, joka aina on enemmän kuin niiden sointujen pelkkä summa, joista se on kokoonpantu. Vasta aivan viima aikoina on saatu ratkaisevia todistuksia siitä, että tällaisia hahmoja tosiaan on olemassa, että siis varsinaisen aistitoiminnan yläpuolella on psykofysiologista tapahtumista, jonka kautta vasta tajunnan sisällys saa kiinteän "struktuurinsa". Tärkeämpiä näistä todisteista ovat aivopatologiset tapaukset tarjonneet, niiden kautta kun - nähdään, minkälainen tajunta on, kun sen sisällystä ei enää syntetisoida hahmoiksi.

Samalla ovat puheenalaiset tapaukset osoittaneet, että toiminta, johonka "hahmojen" käsittäminen perustuu, on psykofysiologista ellei se sitä olisi, ei se voisi erään aivokuoren osan tuhoutumisen kautta hävitä. Tosiseikat eivät siis anna tukea sellaiselle käsitykselle, että "sielu" suorittaisi yksinään mainitun syntetisoivan työn, vaan tämä on samalla aivokuoren fysiologista tapahtumista. Tämä tulos voidaan yleistää ja väittää, ettei tähän saakka ole voitu osoittaa mitään sellaista sielullista toimintaa, oli se kuinka ylevää ja korkeaa tahansa, jota ei jonkun rajoitetumman tai laajemman aivokuoren osan tuhoamisen kautta voitaisi hävittää; tosiseikat viittaavat siis vahvasti siihen suuntaan, ettei ole millään selunelämää, joka ei samalla olisi fysiologista tapahtumista. Tästä seuraa, että keskushermoston lait samalla ovat sielunelämän lakeja ja päinvastoin, ettlä sielunelämän lait ovat keskushermoston lakeja. Sen vuoksi puheenalaiset psykologiset tutkimustulokset, joiden perusteella väitetään olevan olemassa erikoista "hahmojaluovaa" tapahtumista, ovat myöskin aivofysiologialle tavattoman tärkeät - tässä tapahtumisessa ilmenee näet kokonaan uudenlainen hermoston toimintatapa, johon alempi hermoston toiminta tuskin tarjoaa mitään vertauskohtia.

Mainittu "hahmojaluova" toiminta on otaksuttavasti myös kaiken ajatuselämän pohjana.

Saksalaisilla on maailmansodan aikana ollut Teneriffan saarella antropoidiasema, jossa eri puolitta on tutkittu ihmisenkaltaisia apinoita, simpansseja y.m. Suurenmoisissa julkaisuissaan on täällä oleskellut eksperimentoalipsykolagi Köhler ensi kierrän sitovasti todistanut, että antropoideilla on ihmisenkaltaista "älyä" ("Einsicht") - tietysti vain ensi sarastuksessaan. Hän on myöskin tehnyt todennäköiseksi, että sielunelämän alkuna ei voida pitää yksinkertaisia, eristettyjä aistimuksia, vaan että nämä jo kaikkein alhaisimmilla asteilla esiintyvät määrättyinä "hahmoina" eli "struktuureina". Ei tarvitse paljon ennustustaitoa uskaltaakseen väittää, että nämä käsitteet ennenpitkää tulevat olemaan psykologisessa tutkimukisessa aivan keskeisinä.

Tiedcttä ei harjoita oikea tutkija sen käytännöllisen merkityksen tähden, sillä tieteen suurimmilla, vavähduttavimmilla kysymyksillä ei ole mitään käytännöllistä merkityistä. Ei sitä myöskään harjoiteta, jotta saavutettaisiin Totuus, sillä sellaista ei ole — on vaan loppumaton määrä yksityisiä totuuksia, ja kun joku sellainen saavutetaan, huomataan, että sen tavoittelu oli arvokkaampi kuin sen saavuttaminen. Tiedettä harjoitetaan siihen sisältyvän henkiset elämän takia, siksi että se tarjoaa korkeimpia sensate ioneja - sanat alkuperäisessä merkityksessä - mitä ihmiselle yleensä on tarjolla.

Nämä sensatsionit värähdyttävät nykyistä psykologista tutkimusta. Se on luonnontieteellisissä metodeissaan löytänyt varman pohjan ja niiden avulla se kuumeisesti pyrkii luonnon kaikkein salatuimpiin työpajoihin — niihin, missä järjen kirkkaus ihmeellisellä tavalla om leimahtanut tiedottomuuden yöstä.

- Eino Kaila

Flexible Paint.

Manufacturer and builder 11, 1889

The following retains sufficient flexibility to enable the sheet to be rolled: Soft soap, 2 ounces; boiling water, 12 ounces. Dissolve and work well into the usual oil paint - 6 pounds.

Asuinrakennuksen suunnittelussa on tarkasti huomioitava huonejärjestys ja talon asema.

Hämeen Maa 71, 1.6.1929

Maaseudulla yleiseksi tullut n.s. tupakäsite on edelleen pidettävä sille kuuluvassa asemassa.

Arkkitehti Uno Åbergin lehdellemme antama haastattelu.

N.s. omakotirakennuksia on viime vuosien varrella alkanut kohota ei ainoastaan kaupunkien liepeillä oleville esikaupunkialueille vaan myöskin syrjäisemmille ja pienemmille liikekeskusseuduille, jopa aivan pientiloillekin, joita viime vuosien kuluessa on syntynyt runsaasti ja joille on ollut pakko rakentaa suojat karjalle ja maanviljelysirtaimistolle, sekä tietenkin asuntorakennus emäntää, isäntää ja mahdollisesti muuta perhettä varten, koska tilat suurista emätiloista eroitettuna ovat poikkeuksetta olleet vailla rakennuksia. Useimmiten kuitenkin tehdään tuo rakentaminen aivan liian suppeiden ja epätarkkojen suunnitelmien ja laskelmien mukaan, nimittäin ei taloudellisesti niinkään usein vain käytännöllisesti.

Kun taasen on elettävänämme parhaillaan aika, jolloin rakentaminen, ei tietenkään sellaisessa epäterveessä mittakaavassa kuin viime kuluneena rakennuskautena, alkaa viritä erittäinkin pientiloilla, käytäntöön ja suunnitelmia parhaillaan useissa paikoissa maaseutua tehdään, jos ei juuri kaikkialla uusien rakennusten rakentamisesta, mutta kuitenkin vanhojen kunnostamisesta, on lehtemme edustaja onnistunut haastattelemaan tämän alan tunnetusti pätevää asiantuntijaa arkkitehti Uno Åbergia n.s. omakotirakennuksen rakennussuunnitelmista juuri asuinrakennusta ja sen oikeudenmukaista huonejärjestystä y.m. seikkoja silmälläpitäen. Haastateltava kertoikin m.m. seuraavaa:

- Meillä yleensä on niin maaseudulla kuin kaupungeissakin pienempien asuinrakennusten rakentamisen kyseessä ollen suhtauduttu niiden oikeudenmukaiseen järjestelmällisyyteen ja kaikki edulliset ja epäedulliset seikat tonttimaalla huomioimiseen aivan liian yliolkaisesti. Ei ole ensinkään laadittu suunnitelmia siitä, minkälaatuiselta rakennus eri osissa tonttimaata vaikuttaisin ja kuinka asetettuna. On tietenkin kyllä suunniteltu rakennuksen asemaa y.m. osittain, t.s. vain päässä. Tällainen suunnittelu ei tietenkään ole ensinkään pätevä ja asiallinen, vaan päinvastoin huomattavastikin epäedullinen ja harhaanjohtava.

- Rakentajan ei vähäisessäkään määrässä tarvitse olla taiteilija ja rakennusmestari, vaikkakin hän rakennusta, vaatimatontakin suunnitellessaan ja tonttimaalle sovittaessaan käyttää apunaan kynää ja paperia. Näillä välineillä hän voi suoria viivoja piirtämällä ja tulevan rakennuksen asemaa määräilemällä saada sen sekä aurinkoon nähden, että muut mahdolliset saatavissa olevat edellytykset talolleen edullisiksi, sekä itselleen ja perheelleen terveydellisesti ja käytännöllisesti asiallisiksi.

- Niin sanottu keskimääräinen omakotirakennus on sellainen, että siihen saadaan sisällytetyksi kaksi huonetta ja keittiö. Tietenkin enemmän, jos on siihen edellytyksiä. Tämän yhteydessä voin mainita, että maaseudulla yleensä rakennetaan liikaa huonelukua, mutta kaupungeissa liian vähän. Olisi kuitenkin pyrittävä siihen, että huoneet mitkä rakennuksessa tulevat olemaan voidaan asiallisesti käyttää.

- Ensinkään keittiön ei ole tarvis olla erityisen suuren huoneen, sen enempää kuin makuuhuoneenkaan, mutta kylläkin molemmat sellaisia, että niissä voidaan vaivoitta liikkua ja suorittaa tehtävät. Kolmas huone sensijaan saa olla niin tilava kuin mahdollista. Ja tämä huone on se, joka olisi muodostettava sellaiseksi, jossa jouto- ja ruokailuhetket ollaan ja jossa myöskin ruokaillaan. Ei ole ensinkään sopiva tapa käyttää keitiötä jossa erilaatuiset ruoka- ja vesihöyryt leijailevat, ruokailuhuoneena. Vaikkapa huoneita rakennukseen aiottaishokin enemmän kuin kolme, on sittenkin edullista vielä säilyttää käytännössä ja muistissa entisaikojen pirtti- eli tupakäsite. Se on ehdottomasti edullinen ja viihtyisä oleskeluhuoneena, kun se vaan sellaiseksi muodostetaan.

- Ulosjohtavan oven eteen on myös saatava kuisti, sillä ei ole vähäisissäkään määrässä edullista, että ovi kastuu tuulissa ja sateissa. Tämän oven eteen rakennettava kuisti olisi saatava niin suureksi ja lasi-ikkunoilla va'oitetuksi, että siellä esim. sadesäällä voisi istua ja vaikkapa juoda kahviakin. Muuten olisi pienemmässäkin rakennuksessa saatava keittiöön eri ulos käytävä ja se ei kylläkään kustannuksiltaan tule suureksi. Liiallisia ovia olisi kylläkin vältettävä, samoin ikkunoita sillä ne kylmään aikaan ja sitähän meidän maassamme on vuodesta suurin osa, ovat varsin epäedullisia. Käsittääkseni ei rakennuksen päädylle ensinkään muodostu muotopuolisuutta siitä, vaikkapa ikkuna olisikin vain toisella puolella. Tuosta perinnäistavasta, että ikkunoita on tehtävä sen mukaan kuin rakennuksen ulkomuoto vaatii, olisi jo aika luopua.

- Kuistin jälkeen pitäisi rakennuksessa olla jonkunlainen eteinen vaatteiden säilytystä varten, ja tästä eteisestä voisi olla ovet sekä kutsumaani olo- että makuuhuoneeseen, mutta ei keittiöön välttämättömästi. Suomalaisten olisi omaksuttava englantilaisten sananparsi "minun kotini on minun linnani” ja valmistettava se niin hygieenisesti että muutenkin tätä vaatimusta vastaavaksi. Esimerkiksi tuohon kutsumaani olohuoneeseen olisi saatava mahdollisiman runsaasti aurinkoa, mutta makuuhuoneeseen sensijaan riittäisi aamuauringon vierailu.

- Minkälaatuisiin väreihin olisi rakennuksien sisä- ja ulkomaalauksissa pyrittävä?

- Olisi ehdottomasti pyrittävä molemissa rauhallisimpiin väreihin. Rauhalliset värit antavat sekä uiko- että sisäseinässä itsestään huomattavasti edullisimman ilmenemismuodon kuin kirkkaat kiemurat ja sekaiset värisommitelmat. Sensijaan meillä lattian maalauksissa tavaksi tullut keltainen väri olisi jo saatava vaihtumaan. Vaikkapa rakennuksessa yksi huone olisikin lattialtaan keltainen, niin ainakin toisissa huoneissa olisi pyrittävä eri värikokoomuksiin ja niiden yleistämiseen.

- Edellämainitsemani pikkuviitteet ovat peräisin n.s. omakotirakennuksesta, mutta on niitä edullisesti sovellutettavissa myöskin maalaistalojen asuinrakennuksia suunniteltaessa.

- Lopuksi voin mainita, että viime vuoden aikana käytettiin omakotirakennuksiin rahapääomaa kaikkiaan n. 90 milj. markkaa, josta valtion myöntämiä lainoja oli n. 28 milj. markkaa. Tämä rakennusmuoto on kustannuksiltaan halpana ja käytännön palveluksessa täydellisesti asuinrakennukselta vaadittavia mittapuita täyttävänä saavuttanut erittäin suuren suosion, jota jo osaltaan edellä mainitsemani muutamat numerotiedotkin kykenevät osoittamaan.

Graphite, Plumbago, Black Lead.

Manufacturer and builder 9, 1878

Graphite is the proper name for what is contumely called Plumbago, or Black Lead. It is a unique mineral, useful for many and widely different purposes in the mechanical arts. The two purest forms of carbon are the diamond and graphite. The diamond is hard beyond every other substance; graphite is soft and smooth beyond every other substance, and these two substances are equally irdeniructible. The diamond outlasts everything else for given uses, and no graphite outlasts every other substance in resisting the action of the elements. It was utilized as a lubricator two hundred years ago. It has been mixed with clay for crucibles since the tenth century, but was not generally adopted till the foliated variety was utilized for the that time by the late Mr. Joseph Dixon, of Jersey City, in 1827, for the production of the "Dixon Crucibles," which have since become known in every part of the civilized werld.

Graphite was early used for crayons, and was found in use by the Aztecs when Cortex landed in Mexico. It is indispensable in the graphic arts, in the term of what are commonly called lead-pencils, which were first made in England from the granulated graphite taken front the celebrated Barrowdale mine; but after that mine was exhausted, the world was supplied with pencils made from graphite (or black lead) found in Bavaria and Bohemia, and purified for the purpose.

But recently the floe graphite found at Ticonderoga, in the State of New York, has been taken hold of for the Dixon American Graphite Pencils, by the Joseph Dixon Crucible Company, of Jersey City, N. J., and stencils produced that are claimed to be superior to any before known.

It is curious to note the progress of this graphite induetry. Formerly none but very common pencils were made in thie country; now the finest in the world are made here. In Europe they still work by hand in the production of fine pencils. At the Dixon works nearly every operation is by machinery, and it is most interesting to see pencils, all polished and finished, falling from a machine at the rate of 132 per minute, with no other hand-labor than that supplied by a little girl twelve years of age, who keeps the machine well furnished with material, and much of her time sits down, apparently amused at the rapid movements and perfect working of the combination of wheels and arms, belts, pulleys, rachets, and escapements, with a basket full of finished pencils, and they fall at last, and of the very finest grade, from the softest up to the hardest.

The Dixon pencils are very smooth, strong and pleasant to use, and wear longer than any pencils heretofure produced, besides being beautiful in style and finish.

The formation of graphite most common in the pure state is that of laminated crystals, elongated at right angles with the side of the vein, if it is not more than from four to six inches wide; but when the vein widens, te crystallization often radiates from numerous centers, while the whole formation is very beautiful. The foliated variety is equally valuable and more brilliant, but rare in any quantity; the acicular form of crystal is not apt to be as pure in the lump, but in useful for most purposes; the granulated variety, the purest of all, is of little use for crucibles, but, with suitable manipulation, produces the finest grades for electrotyping and fine lead.pencils, and is unequalled for lubricating. Pure graphite is absolutely free from grit, when pulverized and robbed between the fingers, and the polish produced in the same way is instantaneous and very bright, being like a darker shade of polished silver. It is also found mixed with iron, rhombspar, and other kinds of lime, the rock and earth in which the vein is carried, and many other foreign substances injurious for all the purposes for which pure graphite is needed. Lime, for instance, is fatal to graphite for making crucibles.

Graphite in the best known conductor of electricity, resists the action of acids or alkalies, is infusible at the highest hest, is not affected in the least by air, fire or water, and hence its great value as a preservative paint. Applied to iron-work, it prevents rust better than any paint yet used. Applied to tin roofs, it not only prevents rust, but is almost permanent, lasting far beyond any material. For roofs where the cistern water is used for drinking purposes, it is the only paint that is not injurous to health. Its natural color in paint is a slate, and shingle roofs painted with it have every appearance of slate, and by applying three good coats the roof will be perfect twenty years. The rain does not "wash" it in the least, the water going over it as if the roof were glazed, and for that reason it is applied to the bottom of racing yachts. The water rolls off as it would from a duck's back, without wetting the graphite, allowing the boats to glide freely through the water.

Our adjoined cut represents the most important graphite works its the world, those of the Dixon Company, located in Jersey City, N. J. The company own the mines, work them themselves, sell the raw stuck, prepare it for every known use, and manufacture it into every form into which it is now sold, namely, stove-polish, lead-pencils. paints, lubricators, axlegrease, for electrotypers, and a score of other uses.

The company keep a corps of trained correspondents, and any one in search of any information on the subject of Graphite and its uses, can be gratified by addressing them at their office in Jersey City.

A cable dispatch received from Paris says they have been awarded the Gold Modal.

Rödfield.

Hufvudstadbladet 114, 28.4.1912

Polismästar Blåfield i Tammerfors har åter visat ett imponerande nit. Han har uppmanat de socialdemokratiska arbetarna i fabriksstaden att vid 1-majdemonstrationen icke använda "alltför röda färger på sina flaggor". Det är en mycket tidsenlig och välbetänkt uppmaning af ordningens väktare. Det som är för mycket, är onekligen för mycket, och "det alltför röda" i färg, ord eller handling måste utan tvifvel betecknas såsom i allo förkastjigt.

Nu framställer sig emellertid en kinkig fråga: hvad innebär bestämningen "icke alltför röd?” Hvem är det för öfrigt som skall afgöra saken? Polismästar Blåfield?

I så fall vore det intressant att erfara herr Blåfields åsikter om den röda färgen? öfverensstämmer den eller öfverensstämmer den icke med aflidne geheimerådet Goethes, hvars höga samhällsställning, om ej öfriga höga meriter, måhända imponerar på Tammerfors polismästarens färgsinne. Bemälde Goethe indelade färgerna i varma och uppeggande, kalla och nedstämmande, neutrala och lugnande. Till den förstnämnda kategorin hänförde han rödt och gult tänk just de färger polisen i våra dagar tycker minst om. Men han talar ingenstädes om "allt för röda färger". Hans färgskala ger ingen ledning åt våra socialdemokratiska Tammerforsare.

Så är det en annan omständighet, som gör herr Blåfields råd till arbetarpartiet i Tammerfors svårt att följa. Hvem garanterar att icke herr Blåfield lider af medfödd färgblindhet. När allt går omkring borde han alls ej heta Blåfield, utan Rödfield. Men dessutom vet ju en och hvar, att det äfven ges något, som kallas förvärfvad färgblindhet. Lider tilläfventyrs Tammerfors nitiske polismästare häraf? Eller är han månne rödblind? Eller ensidigt färgblind, med andra ord behäftad med både ett normalt och ett färgblindt öga, så att det beror på med hvilketdera ögat herr polismästaren bohagar se på flaggorna? Alla röda färger synas nämligen för den rödblindes öga ljussvagare än normalt och rent rödt synes för den rödblindes öga alldeles ofärgadt. Tänk nu om herr Blåfield skulle finna do allra blodrödaste fanor oförgripliga? Saken borde onekligen med allra första undersökas, i hvarje fall före 1 maj.

För ändamålet ges det en mycket enkel metod. Herr Blåfield bör ögonblickligen lägga sig till en färgsnurra och ifrigt betrakta den, i närvaro af ojäfviga personer, hvilkas färgsinne står höj dt öfver alla tvifvel och af läkare attesterate felfritt, ser han då rödt, när, andra se grönt, sä bör han gå hella och skrifva sin afskedsansökan. Ty då kan inte ens han själf reda ut frågan, hvad som är allt för rödt.

Låt färgsnurran gå, herr Rödfield.

- Mr Browning.

Päivän pakinaa. Lippujuttua.

Helsingin Sanomat 173, 31.7.1912

Meidän rakkaassa isänmaassamme owat waltakuntain liput ja kansalliset wärit nykyään ankaran pohdinnan alaisina. Wenäjän waltakunnan arwo ja menestys waatii, ettei täällä saa mikään lipuntapainen liehua, ellei sen yläpuolella tai jollakin muulla poliisi-etiketin määräämällä kunniasijalla samalla liehu Wenäjän kauppalippu. Meidän tietysti täytyy alistua waltakuntansa edut parhaiten tietäwän hallitowallan edustajien waatimuksiin, waikkakin ne tuntuwat wähän samanlaisilta kuin Nummisuutarin Eskon waatimus, että hänen puumerkkinsä piti myöskin olla naimalupakirjassa.

Mutta tämä ulkopoliittinen lippukysymys en saanut polttawaksi myös sisäisen, kansallisen lippukysymyksen. Mikä on Suomen lippu? Mitkä owat ensistään Suomen wärit? Owatko ne punainen ja keltainen, Suomen waakunan wärit, historiallisen traditsionin pyhittämät ja käytännön jo osaksi wakaannuttamat? Waiko sininen ja walkoinen, setä Topeliuksen keksimät, Juhani Ahon juhlallistuttamat ja Suomettaren Matin wiime sunnuntaina siunaamat? Tässä kysymys, joka pirstoo Suomea suuria ja antaa pääkirjoitusten aiheita kuiwana kesäaikana.

Minä kannatan punaista ja keltaista. Minua kannattawat ehdottomasti kaikki ruotsalaiset ja moni suomenkielinenkin, joka pitää arwossa traditsioneja ja wakawaa, historiallista kehitystä. Wielä ne, jotka haluawat wärejä, mitkä näkywät meidän kaikin puolin niin wäriköyhässä maassamme. Komeita wärejä, jotka eiwät haalistu niin pahasti kuin esim. sininen. Ja sitten minua wielä punaisen wuoksi kannattawat kaikki sosialistit ainakin puolella sydämellä. Keltainen ja punainen owat olleet Suomen wärit "olympialaisissa" ja punakeltainen leijonalippu on kerran liehunut senaatin katolla y. m. julkisissa ja juhlallisissa paikoissa.

Siniwalkoista lippua kannattawat kaikki wilpittömät kansallismieliset, sanoo U. S:n Matti. Tuo lippu on toisin sanoen kansallismielisyyden wilpittömyyden tunnusmerkki ja koetuskiwi. Mattia kannattawat laajat kansalaispiirit. Miten woimme päästä tästä ristikohdasta? Yleinen kansan-änestys ilmoittaisi kyllä enemmistön mielipiteen, mutta miten saada wähemmistö taipumaan? Se kohottaisi kuitenkin omat wärinsä, waikka kansanwalta säätäisikin toiset pakollisiksi. Näen hengessä kansallismielisen poliisin waatimassa siniwalkealle lipulle kunniapaikkaa punakeltaiseen nähden...

"Åbo Underrättelser" tahtoo keltaisen ristin punaiselle pohjalle skandinawialaiseen malliin. "Dagens Tidning" tahtoo eilisessä pääkirjoituksessaan selwä leijonalippua. Miktsi ei wärejä rinnakkain, pitkittäin tai poikittain, tai useita punaisia ja keltaisia juowia pitkittäin tai poikittain? Ja monia muita mahdollisuuksia on wielä. Miten niistä selwiydytään, jos enemmistö kerran hywäksyisi wärit? Kyllä siitä wielä syntyisi kokouksia, äänestyksiä, riitoja ja sanomalehtikirjoituksia.

Sinisestä ja walkoisesta ei ole sen helpompi lippua laittaa. Suometar ehkä kannattaisi wärejä pitkittäin. "Uusi Aura" tahtoisi wärit poikittain ja "Wiipuri" ehkä kannattaisi P. Andreaksen ristiä, Wenäjän sotalaitosten siniwalkoista lippua. Entä minkälaista sinistä käytettäisiin? Merensinistä, taiwaansinistä, ruiskukan sinistä tai Hämeen neitojen silmien sineä? Ruotsissa oli ankaranlainen riita siitä oikeasta siniwäristä, kun muutama wuosi sitten lippu uudistettiin unionimerkin jouduttua siitä pois. Nyt siellä on normaalilippu ilmattomassa lasilaatikosta ijankaikkisesti opastamassa Ruotsin kansaa oikeista sini- ja keltawäreistä. Minä kauhistun sitä kamppailua, joka meidän riitaisen kansamme olisi käytäwä, ennenkuin Kansallismuseoon saataisiin kansallinen normaalilippu. Siitä syntyisi weljeswihaa ja kansalaiswainoa, syntyisi rikkirewitylle kansallemme niin paljon sisäisiä kärsimyksiä - ellei tämän kansan luonto ihmeellisesti muutu - että minä tulen wallan totiseksi sitä ajatellessani.

Mutta silti woidaan näin mätäkuussa wakawasti pohtia kysymystä kansallisista wäreistämme. Kuten sanottu: minä kannatan punaista ja keltaista. Ja juhlallisissa tilaisuuksissa leijonalippua.

- Timo

Walkokutristen naisten häwiäminen.

Helsingin Sanomat 173, 31.7.1912

Yleisesti tunnettu asia on, että walkokutriset lapset jo kymmenwuotiaina, jopa aikaisemmin muuttawat tukan wäriään, waikka owatkin syntyneet walkotukkaisista wanhemmista, joka kumminkin muuten on harwinaista, sillä tummat hiukset owat kaikkialla tunkeutuneet etusijaan ja esiintywät jälkeläisissä paljoa woimakkaaammassa muodossa kuin waaleat. Eräs englantilainen fysiologi wäittää tutkimusissaan johtuneensa siihen tulokseen, että waaleatukkainen tyyppi yhä enemmän menee taaksepäin ja että waaleakutriset ihmiset yleensä tulewat kuolemaan sukupuuttoon. "Sä sinisilmäinen, walkokutrinen, kuten notkea saksankuusi!" woi mikään runoilija tuskin enää parinsadan wuoden päästä laulaa tämän tiedemiesten lausunnon mukaan ja "waaleakutrinen Gretehen" käy tarumaiseksi henkilöksi. Elleiwät sitten naiset turwaudu samaan keinoon, josta roomattaret muinoin löysiwät pelastuksensa kadehtiessaan germanilaisten naisten ihania waaleita kutreja, nimittäin syöwyttäwät jollakin aineella tukkansa waaleiksi, on walkokutristen naisten perikato warma. Myös tilasto odosoittaa, että 100:sta waaleatukkaisesta naisesta ainoastaan 55 joutuu naimisiin, kun sitäwastoin 100:sta tummatukkaisesta 79, ja siis tämänkin kautta waaleatukkaiset wähitellen kuolewat sukupuuttoon. Tilastolliset numerot owat sitä huolestuttawampia, kun Englanti tähän saakka on ollut itse asiassa waaleakutristen kaunotarten maa, ja kumminkin siellä tumma- ja waaleakiharaisten suhte on 3:2. Myöskin Tanskassa, jota Ruotsin ja Norjan kanssa on totuttu pitämään waaleatukkaisen germanilaisen tyypin emämaana, on tarkkojen tilastollisten tutkimusten akutta huomattu, että waaleaweriset ihmiset owat taaksepäin menossa. Tanskassa ja Ruotsissa owat waaleat silmät kumminkin säilyneet mustien tai tummien hiusten ohella. Myöskin Saksassa, jota yleensä on pidetty walkeaweristen maana, on siirtyminen tummaan hiuswäriin huomattawissa, ja erikoisesti owat liinatukkaiset tulleet hywin harwinaisiksi.

23.5.22

The Aurora Borealis or Polar Light.

Harper's New Monthly Magazine 229, JUN 1869

By Elias Loomis, Professor in Yale College.

The polar light is a light which is frequently seen near the horizon, bearing some resemblance to the morning whence it has received the name of aurora. In the northern hemisphere it is usually termed "aurora borealis," because it is chiefly seen in the north. A similar phenomenon is also seen in the southern hemisphere, where it is called "Aurora Australis." Each of them may, with greater propriety, be called "Aurora Polaris," or Polar Light.

Auroras exhibit an endless variety of appearances; but they may generally he referred to one of the following classes:

First. — A light near the horizon, resembling the morning aurora or break of day. The polar light may generally he distinguished from the true dawn by its position in the heavens, especially in the United States, where it always appears in the northern quarter. This is the most common form of aurora, but it is not an essentially distinct variety, being due to a blending of the other varieties in the distance. The upper boundary of this light is an arc of a small circle, which shades off gradually into the darkness of the nocturnal sky, but is much better defined than the twilight.

Second — An arch of light somewhat in the form of a rainbow. This arch frequently extends entirely across the heavens, from east to west, and cuts the magnetic meridian nearly at right angles. This arch does not remain fur a long time stationary, but changes its elevation above the horizon; and when the aurora exhibits great splendor, several parallel arches are often seen at the same time, appearing as broad belts of light stretching from the eastern to the western horizon. In high northern latitudes five or six such arches have frequently been ,eon at once; and on two occasions have been seen nine parallel arches, separated by distinct intervals. Figure 2 represents auroral arches seen a few years since in Canada.

Third — Slender, luminous beams or columns, well defined, and frequently very brilliant. These beams rise to various heights in the heavens, frequently 20 or 30 degrees, and sometimes ascending as high as the zenith. Their breadth varies from a quarter of a degree up to two or three degrees. Frequently they last but a few minutes; sometimes they continue a quarter of an hour, a half hour, or even a whole hour. Sometimes they remain for several minntes at rest, and sometimes they have a quick lateral motion. Their light is commonly of a pale yellow, sometimes it is reddish, while occasionally it is crimson or even of blood-color. Sometimes the luminous beams are interspersed with dark rays resembling dense smoke. Sometimes the tops of the beams are pointed, and having a waving motion they resemble the lambent flames of half extinguished alcohol burning upon a broad, flat surface. [See Figures 3, 4, and 5.] Faint stars are visible through the substance of the auroral beams.

Fourth. — The corona or crown. Luminous beams sometimes shoot up simultaneously from nearly every pan of the horizon, and converge to a point a little south of the zenith, forming a quivering canopy of flame. This is called a corona or crown. The sky now resembles a fiery dome. and the crown appears to rest upon variegated fiery pillars, which are frequently traversed by waves or flashes of light. This may he called a complete aurora, and comprehends most of the peculiarities of the other varieties. [See Figure 13.] The corona seldom remains complete longer than one hour. The streamers then become fewer and less intensely colored, the luminous arches break up, while a dark segment is still visible near the northern horizon, and at last nothing remains but masses of delicate clouds. During the exhibition of brilliant auroras, delicate fibrous clouds are commonly seen floating in the upper regions of the atmosphere; and on the morning after a great nocturnal display we sometimes recognize streaks of cloud similar to those which had been luminous during the preceding night. Sometimes when the sun is above the horizon these clouds arrange themselves in forms similar to the beams of the aurora, constituting what has been called a "day aurora."

Fifth — Waves or flashes of light. The luminous beams sometimes appear to shake with at tremulous motion; while flashes like waves of light roll up toward the zenith, and sometimes travel along the line of an auroral arch. Sometimes the beams have a slow, lateral motion from east to west, and sometimes from west to east. These sudden flashes of auroral light are known by the name of "Merry Dancers," and form an important feature of nearly every splendid aurora.

The duration of auroras is very variable. Some last only an hour or two; others last all night; and occasionally they appear on two successive nights under circumstances which lead us to believe that, were it not for the light of the sun, an aurora might be seen uninterruptedly for thirty-six or forty-eight hours. For more than a week, commencing August 28, 1859, in the northern part of the United States, the aurora was seen almost uninterruptedly every clear night. In the neighborhood of Hudson Bay the aurora is seen for months almost without intermission.

Auroras are characterized by recurring tits of brilliancy. After a brilliant aurora has faded away and almost entirely disappeared, it is common for it to revive, so as to rival and often to surpass its first magnificence. Two such alternations are common features of brilliant auroras, and sometimes three or four occur on the same night.

The color of the aurora is very variable. When the aurora is faint its light is usually white or a pale yellow. When the aurora is brilliant, the sky exhibits at the same time to great variety of tints; some portions of the sky are nearly white, but with a tinge of emeraldgreen; other portions arc of a pale yellow or strawcolor; others are tinged with a rosy hue; while others may have a crimson hue, which sometimes deepens to a blood-red. These colors arc ever varying in their position and in the intensity of their light. Auroras are sometimes observed simultaneously over large portions of the globe. The aurora of August 28, 1859, was seen throughout more than 140 degrees of longitude, from Eastern Europe to California; and from Jamaica on the south to an unknown distance in British America on the north. The aurora of September 2, 1859, was seen at the Sandwich Islands; it was seen throughout the whole of North America and Europe; and the disturbance of the magnetic needle indicated its presence throughout all Northern Asia, although the sky was overcast, so that at many places it could not be seen. An aurora was twen at the same time in South America and New Holland. The auroras of September 25, 1841, and November 17, 1848, were almost equally extensive.

In the United States an aurora is uniformly preceded by a hazy or slaty appearance of the sky, particulady In the neighborhood of the northern horizon. When the auroral display confluences, this hazy portion of the sky assumes the form of a dark hank or segment of a circle in the north, rising ordinarily to the height of from five to ten degrees. [See Figure 6]. This dark segment is not a cloud, for the stars are seen through it as through a smoky atmosphere, with little diminution of brilliancy.

This dark bank is simply a dense haze, and it appears darker from the contrast with the luminous are which rests upon it. In high northern latitudes, when the aurora covers the entire heavens, the whole sky seems filled with a dense haze; and in still higher latitudes, where the aurora is sometimes seen in the south, this dark segment is observed resting on the southern horizon and bordered by the auroral light. This phenomenon was noticed in the United States in the aurora of August, 1859. The highest point of this dark segment generally coincides with the magnetic meridian. Exceptions to this rule do, however, frequently occur, and in some places there is a constant deviation of ten degrees or more.

The dark segment just described is bounded by a luminous arc, whose breadth varies from half a degree to one or two degrees. The lower edge of the arc is well defined; but unless the breadth be very small the upper edge is ill defined, and blends with a general brightness of the sky. If the aurora becomes brilliant, other arcs usually form at greater elevations, sometimes pausing through the zenith. The summit of these arcs is situated nearly in the tnagne:ie meridian, and the arc sometimes extends symmetrically on each side toward the horizon. Frequently, however, the summit of the arc deviates ten degrees or more from the magnetic meridian, and in some places this deviation appears to be tolerably constant.

An auroral arch is frequently incomplete, and extends only a portion of the distance front one horizon to the other. The apparent breadth of auroral arches varies with their elevation above the horizon. The result of a large number of observations gives eight degrees as the average breadth of arches seen at altitudes less than sixty degrees; while fot arches whose altitude is greater than sixty degrees the average breadth is twenty-five degrees.

When an arch appears to move across the sky from north to south or the reverse, its angular breadth exhibits corresponding changes. If the distance of an arch from the earth remained constant during its movement of translation, and the arch was of the term of a ring whose section was a circle, its breadth when in the zenith should be double what it was when its elevation was 30 degrees. But its observed breadth in the former case is three or four times as great as in the latter, showing that a section of the ring is of an oval form with its greatest diameter parallel to the earth's surface.

Auroral arches do not meet the horizon at points distant 180 degrees from each other. Careful measurements have shown that, except near the horizon, they may be regarded us portions of small circles parallel to the earth's surface. Such a circle seen obliquely would have the appearance of an ellipse. Near the horizon the elliptic form of the auroral arch has sometimes been quite noticeable, the extremities of the arch being bent inward as shown in Figure 7. Occasionally an ellipse has been seen almost entire, and in one instance the ellip,e has been seen complete. the axes of the ellipse being in the ratio of two to one.

Sometimes an auroral arch consists of rays arranged in irregular and sinuous bands of tanous and variable curvatures, like the undulations of a streamer or flag waving in the breeze. Sometimes the appearance is that of a brilliant curtain whose folds are agitated by the wind. [See Figures 10 and 11.] These folds sometimes become very numerous and complex, and the arch assumes the form of a long sheet of rays returning into itself, the folds enveloping each other, and presenting an immense variety of the most graceful curves.

Auroral arches generally temd to divide into short rays running in the direction of the breadth of the arch, and converging toward the magnetic zenith. They frequently appear to be formed of transverse fibres terminating in a regular curve, which forms the lower edge of the arch. Arches of a uniform nebulous apprearance are not the most frequent; striated arches are very common; and auroral arches present every intermediate variety between these two extremes. Sometimes auroral beams arrange themselves in the form of an arch. Sometimes an auroral arch is formed of short streams parallel to each other, presenting the appearance of a row of comets' tails.

An auroral arch does not long maintain a fixed position. It is frequently displaced, and is transported parallel to itself from north to south, or from south to north. Sometimes an arch which is first seen near the northern horizon gradually rises, ascends to the zenith, and descends toward the southern horizon, where it remains for a time nearly stationary, and then perhaps retraces its course. In the United States, as well as in Europe, auroral arches more frequently move from north to south than from south to north. Sometimes there is also a movement of the arch from west to east, or from east to west. The rate of motion of auroral arches very variable. If we suppose the arch to he elevated 125 miles above the earth, the observed angular motion of translation would indicate an actual velocity of from 1000 to 3000 feet per second.

The motion of auroral beams is sometimes in a lateral direction, and sometimes it is upward or downward. The downard motion is the most common, and sometimes it takes place with very great velocity, and in a large number or beams simultaneously. When an auroral beam rises and falls alternately without much change of length, it is said to dance. This is a common occurence in high northern latitudes, where it is known by the name of "Merry Dancers."

When the sky is filled with a large number of separate beams all parallel to each other, according to the rules of perspective these beams will seem to converge to one point, as shown in the Figures 15 and 16; and if the beams are parallel to the direction of the dipping-needle, they will seem to converge to the magnetic zenith. [See Figure 17.] Hence results the appearance of a corona or crown of rays whose centre is less luminous than other portions of the sky. [See Figure 13.]

Sometimes the corona is incomplete, the beams on one side being deficient. When a striated arch passes the magnetic zenith it frequently presents the appearance of an incomplete corona. If the arch advance. from north to south, before reaching the magnetic zenith it forms a half crown on the northern side; when it passes the magnetic zenith we have a corona tolerably complete; and after the arch has passed the magnetic zenith it forms a half crown on the southern side.

When an aurora becomes less active its beams become less luminouss, their edges become more diffuse, they diminish in length while they increase in breadth, and assume the appearance of luminous clouds. Sometimes they exhibit a fibrous structure, and present a strong resemblance to those delicate clouds which are often seen in pleasant weather, and are designated by the term "cirrus."

During the exhibition of a brilliant aurora we frequently notice an appearance of general nebulosity or luminous vapor covering large portions of the heavens, and sometimes altnost the entire celestial vault. In the upper part of the sky the light is generally faint, sometimes not exceeding that of the milkyway; but near the horizon the light is sometimes so intense as to resemble a vast conflagration. The great disparity between the light of auroral vapor when near the zenith and near the horizon indicates that the vertical thickness of the auroral vapor is small in comparison with its horizontal dimensions.

The great auroral exhibition of August and September, 1859, was very carefully observed at a large number of stations, and these observations have enabled us to determine the height of the aurora above the earth's surface. At the most southern stations where these auroras were observed, the light rose only a few degrees above the northern horizon; at more northern stations the aurora appeared at a greater elevation; at certain stations it just attained the zenith; at stations further north the aurora covered the entire northern heavens as well as a portion of the southern; and at places still further north nearly the entire visible heavens front the northern to the southern horizon were overspread with the auroral light.

In Figure 14, An represents a portion of the earth's surface, and beneath are given the names of some of the places where observations were made upon the aurora of August 28, 1859, all at the same hour of the evening. The dotted lines drawn from the five most southern stations (Jamaica to Savannah) represent the elevations of the upper boundary of the auroral light above the northern horizon. The point 1) thus determined is then the upper edge of the auroral light near its southern margin, and this point is found to be 534 miles above the earth's surface.

The dotted lines from the five most northern stations (Sandy Spring, Maryland, to Lewiston, Maine) show the elevation of the lower limit of the auroral light above the south horizon. The point C thus determined is the lower edge of the auroral light near its southern margin, and this point is found to be 46 miles above the earth's surface. The line CD represents, therefore, the southern boundary of the auroral illumination.

These results, combined with a vast number of other observations, show that the aurora of August 28, 1859, formed a stratum of light encircling the northern hemisphere, extending southward to latitude 38 degrees in North America, and reaching to an unknown distance on the north; and it pervaded more or less the entire interval between the elevations of 46 miles and 500 miles above the earth's surface. This illumination consisted chiefly of luminous beams or columns every where nearly parallel to the direction of a magnetic needle when freely suspended.

At New York a magnetic needle, freely suspended, points about seven degrees westward of the true north; and if the needle be supported by its centre of gravity, so as to be free to move in a vertical plane, the north pole will incline downward, making an angle of about 17 degrees with a vertical line. Such a needle we call a dipping-needle, and the point nearly overhead toward which one pole of the dipping-needle is directed is called the magnetic zenith. In Southern Florida the dip of the magnetic needle is 55 degrees, and it increases as we proceed northward, being about 73 degrees at New York, and 78 degrees at Quebec.

The luminous beams in the aurora of August, 1859, were sensibly parallel to the direction of the dipping-needle; they were about 500 miles in length, while their diameters varied from 5 to 50 miles, and perhaps sometimes they were still greater.

The height of a large number of auroras has been computed by similar methods, and the average result for the upper limit of the streamera is 450 miles. From a multitude of observations it is concluded that the aurora seldom appears at an elevation less than about 45 miles above the earth's surface, and that it frequently extends upward to an elevation of 500 miles. Auroral arches having a well-defined border are generally less than 100 miles in height.

Some persons contend that the aurora is occasionally seen nt elevations of less than one mile above the earth's surface. It has been claimed that the aurora is sometimes seen between the obserYer and a cloud; but this appearance is believed to result from a cloud of very small density, thoroughly illumined by auroral light which shines through the cloud, so as to produce the same appearance as if the aurora prevailed On the under side of the cloud.

Sometimes the lower extremity of an auroral streamer appears to be prolonged below the summit of a neighboring mountain or hill. This appearance is probably an illusion. The same phenomenon has been noticed by more cautious observers, who traced the result to the reflection of the auroral light from the snow which covered the mountain. Although it is possible that the aurora may sometimes descend nearly to the earth's surface, there is no sufficient evidence to prove that the true polar light has ever descended so low as the region of ordinary clouds.

There is no satisfactory evidence that the aurora ever emits any audible sound. It is nevertheless a common impression, at least in high latitudes, that the aurora sometimes emits sound. This sound has been described as a rustling, hissing, crackling noise. But the most competent observers, who have spent several minters in the Arctic regions, where auroras are seen in their greatest brilliancy, have been convinced that this supposed rustling is a mere illusion. It is therefore inferred that the sounds which have been ascribed to the aurora must have been due to other causes, such as the motion of the wind, or the cracking of the snow and ice in consequence of their low temperature.

If the aurora emitted any audible sound this sound ought to follow the auroral movement after a considerable interval. Sound requires four minutes to travel a distance of 50 miles. But the observers who report noises succeeding auroral movementa make no mention of any interval. It is therefore inferred that the sounds which have been heard during auroral exhibitions are to be ascribed to other causes than the aurora.

Auroras are very unequally distributed over the earth's surface. They occur most frequently in the higher, latitudes, and arc almost unknown within the tropics. At Havana, in latitude 23 degrees, but six auroras have been recorded within a hundred years, and south of Havana auroras are still more unfrequent. As we travel northward from Cuba, auroras increase in frequency and brilliancy; they rise higher in the heavens, and oftener ascend to the zenith. Near the parallel of 40 degrees we find on an average only ten auroras annually. Near the parallel of 42 degrees the average number is twenty annually; near 45 degrees the number is forty; and near the parallel of 50 degrees it amounts to eighty annually. Between this point and the parallel of 62 degrees auroras, daring the winter, are seen almost every night. They appear high in the heavens, and as often to the south as the north. In regions further north they are seldom seen except in the south, and from this point they diminish in frequency and brilliancy as we advance toward the pole. Beyond latitude 62 degrees the average nullifier of auroras is reduced to forty annually. Beyond latitude 67 degrees it is reduced to twenty; and near latitude 78 degrees it is reduced to ten annually. If we make a like comparison for any European meridian we shall find a similar result, except that the auroral region is situated further northward than it is in America. Upon Figure 18 the dark shade indicates the region where the average number of auroras annually amounts to at least eighty; and the lighter shade indicates the region where the average number of auroras annually amounts to at least forty.

We thus see that the region of greatest auroral abundance is a zone of an oval form surrounding the north pole, and whose central line crosses the meridian of Washington in latitude 56 degrees, and the meridian of St. Petersburg in latitude 71 degrees. Accordingly, auroras are much more frequent in the United States than they are in the same latitudes of Europe. Within this auroral zone is a region 2000 miles in diameter, throughout which it is presumed that auroras are not more common than they are in New England.

Auroras in the southern hemisphere are nearly, if not quite, as frequent as they are in the corresponding magnetic latitudes of the northern hemisphere, and it is probable that the geographical distribution of auroras in the two hemispheres is somewhat similar.

By comparing the records of auroras in the two hemispheres we find a remarkable coincidence of dates, which seems to justify the conclusion that an unusual auroral display in the southern hemisphere is always accompanied by an unusual display in the northern hemisphere; that is, a great exhibition of auroral light about one magnetic pole of the earth is uniformly attended by a great exhibition of auroral light about the opposite magnetic pole.

The aurora is ordinarily accompanied by a considerable disturbance of the magnetic needle, and the effect increases with the extent and brilliancy of the aurora. Auroral beams cause a disturbance of the needle, particularly when the beams themselves are in active motion. Auroral waves or flashes, especially if they extend us high as the zenith, cause a violent agitation of the needle, consisting of an irregular oscillation on each ride of its mean position.

These extraordinary deflections of the needle prevail almost simultaneously over large portions of the globe, even where the aurora itself is not visible. During the great auroral display of September 2, 1859, the disturbances of the magnetic needle were very remarkable throughout North America, Europe, and Noethern Asia, as well as in New Holland. At Toronto, in Canada, the declination of the needle changed nearly four degrees in half an hour. The inclination was observed to change nearly three degrees when the needle passed beyond the limits of the graduated scale, so that the entire range of the needle could not be determined. At several observatories in Europe still more remarkatle disturbances were recorded. These irregular disturbances of the magnetic needle are not quite sitnultaneous at distant stations. Over the surface of Europe and also of North America they appear to be propagated from northeaat to southwest at the rate of about 100 miles per minute.

Auroras exert a remarkable influence upon the wires of the electric telegraph. During the prevalence of brilliant auroras the telegraph lines generally become unmanageable. The aurora develops electric currents upon the wires, and hence results a motion of the telegraph instruments similar to that which is employed in telegraphing; and since this movement is frequent and irregular, it ordinarily becomes impossible to transmit intelligible signals. During several remarkable auroras, however, the currents of electricity on the telegraph wires have been so steady and powerful that they have been used for telegraph purposes as a substitute for a voltaic battery; that is, messages have been transmitted by telegraph from the auroral influence alone. This result proves that the aurora develops on the telegraph wires an electric current similar to that of a voltaic battery, and differing only in its variable intensity.

Auroras appear at all hours of the night, but not with equal frequency. The aserugs number increases uninterruptedly from sunset till about midnight, from which time the number diminishes uninterruptedly till morning. In Canada the maximum occurs an hour before midnight; further north, in latitude 52 degrees, the maximum occurs at midnight; and still further north, to the Arctic Ocean, the maximum occurs an hour after midnight.

Auroras occur in each month of the year, but not with eqnal frequency. In New England and New York the least number of auroras is recorded in winter, and the greatest number in the autumn. It is difficult to make an entirely satisfactory comparison on account of the unequal length of the days in the different seasons of the year; but apparently the maximum occurs in September, and the minimum in December or January. The number of auroras seen in different years is extremely variable. Sometimes, for several years, auroras arc remarkable for their number and magnificence, and then there succeeds a barren interval during which auroras are almost entirely forgotten.

If we compare the observations made at any one station for a long period of years, we shall diseover that the inequality in the number of auroras upon successive years recurs periodically. In order to discover the law which governs auroral displays, it important to have observations made at the same station upon a uniform plan continued for a long period of time. A tolerably complete auroral record has been kept at New Haven for nearly one hundred years, and a similar record has been kept in the neighborhood of Boston since 1712. Similar records have been preserved at many places in Europe, extending back for a period of two centuries. In order to neutralize as far as possible the imperfections of any single record, I have taken the average of three different records, viz.: those at New Haven and Boston, representing New England, and that at St. Petersburg, representing the north of Europe. Instead of exhibiting these results in a tabular form I have represented them by a curve line in Figure 19. The years are indicated both at the top and bottom of the figure, and from the base line AB for each year a perpendicular is drawn whose length is proportional to the number of auroras recorded for that year, the number of auroras being indicated on the left of the figure. Through the points thus determined a curve line is drawn, and this curve represents the relative number of auroras in New England and Northern Europe for a period of 130 years. This curve dearly indicates a period of unusual auroral abundance from 1770 to 1790. Then followed a period of great barrenness from 1792 to 1826; and then succeeded another period of unusual abundance from 1836 to 1864. We also notice subordinate fluctuations which generally succeed each other at intervals of about eleven years. Thus auroras were uncommonly abundant in the years 1773, 1781, 1787, 1840, 1848, and 180, while during the barren period from 1790 to 1826 is slight increase will be remarked in the years 1804 and 1819, with a more decided increase in 1830. Most of these peculiarities are noticeable in the observations at each of the stations employed in this comparison, and the principal of them are clearly marked in the observations at every station where an auroral record has been long continued. These inequalities in the observed frequency of auroras are not accidental, nor are they local peculiarities, but they are characteristic of the northern hemisphere of our globe. It is then considered as established that periods of unusual auroral abundance succeed each other at intervals of from eight to sixteen years, the average interval being somewhat over eleven years. Moreover, these successive maxima are very unequal in intensity, showing generally a grand maximum at the end of five of the shorter periods; that is, at intervals of 55 or 56 years. These conclusions are confirmed by the records of auroral displays extending back a century earlier than is shown in Figure 19. Tte grand result, then, which we have deduced from the observations is, that auroras recur in unusual numbers every eleven years, and there is a maximum of unusual splendor every fifty-five years. During the last few years auroras have been less numerous than usual, but a considerable increase of splendor may be anticipated about 1870.

Theory of the Polar Light.

Some have ascribed the polar light to a rare nebulous matter occupying the interplanetary spaces, and revolving round the sun at such a distance that a portion of this matter occasionally falls into the upper regions of the atmosphere with a velocity sufficient to render it luminous from the condensation of the air before it. Upon this hypothesis the aurora would not differ essentially from a grand exhibition of shooting-starks unless, perhaps, in the density of the substance which occasions the phenomenon. But this hypothesis will not explain why auroras are always confined to certain districts of the earth, and are wholly unknown in other portions. We reject this hypothesis, therefore, as irreconcilable with the known geographical distribution of auroras.

Auroral exhibitions take place in the upper regions of the atmosphere, since they partake of the earth's rotation. All the celestial bodies have an apparent motion from east to west, arising from the rotation of the earth; but bodies belonging to the earth, including the atmosphere and the clouds which float in it, partake of the earth's rotation, so that their relative position is not affected by it. The same is true of auroral exhibitions. Whenever an auroral corona is formed, it maintains sensibly the same position in the heavens during the whole period of its continuance, although the stars meanwhile revolve at the rate of 15 degrees per hour.

The grosser part of the earth's atmosphere is limited to a moderate distance from the earth. At the height of a little over four miles, the density of the air is only onehalf what it is at the earth's surface. At the height of 50 miles the atmosphere is wellnigh inappreciable in its effect upon twilight. The phenomena of lunar eclipses indicate an appreciable atmosphere at the height of 66 miles. rime phenomena of shoutingstars indicate an atmosphere at the height of 200 or 300 miles, while the aurora indicates that the atmosphere does not entirely cease at the height of 500 miles. Auroral exhibitions take place, therefore, in an atmosphere of extreme rarity; so rare indeed that if, in experiments with an airpump, we could exhaust the air as completely, we should say that we had obtained a perfect vacuum.

The auroral light is electric light. Onr first reason for believing in this identity is derived front the appearance of the auroral light. The colors of the aurora are the same as those of ordinary electricity passed through rarefied air. When a spark is drawn from an ordinary electrical machine in air of the usual density, the light is intense and nearly white. If the electricity be passed through a Ow vessel in which the air hat been partially rarefied, the light is more diffuse, and inclines to a delicate rosy hue. If the air be still further rarefied, the light becomes very diffuse, and its color becomes a deep rose or purple. The same variety of colors is observed during auroral exhibitions. The transition from a white or pale straw-color to a rosy hue, and finally to a deep red, probably depends upon the height above the earth, and upon the amount of condensed vapor present in the air.

The emerald-green light which is seen in some auroras is ascribed to the projection of the yellow light of the aurora upon the blue sky, since green may be formed by a combination of yellow and blue light. A similar effect is often produced in the evening twilight by a combination of the yellow light of the sun with the blue of the celestial vault.

The light of electricity possesses certain properties which distinguish it front solar light. There are certain substances which, in ordinary solar light, appear almost entirely transparent, like pure water, but which, when illumined by an electric spark in a dark room, present a very peculiar appearance, as if they were self-luminous. This appearance is termed fluorescence. When such substances are illumined by auroral light, they exhibit the same peculiarity as when illumined by the spark of an ordinary electrical machine.

These considerations must he admitted to create a strong probability that auroral light is identical with electric light. This probability becomes a certainty when we study the effect of an aurora upon the telegraph wires. The electric telegraph is worked by a current of electricity generated by a voltaic battery, and flowing along the conducting wire which unites the distant. stations. This current, flowing round an electromagnet, renders it temporarily magnetic, so that its armature is attracted, and a mark is made upon a roll of paper. During a thunderstorm the electricity of the atmosphere affects the conducting wire in a similar manner, and a great auroral display produces a like effect. During the auroras of August and September, M59, there were remarked all those classes of effects which are considered as characteristic of electricity. We will enumerate the most remarkable of these effects:

(1.) In passing front one conductor to another, electricity exhibits a spark of light. This light is not like that of a burning coal or a heated iron, but a bright spark, without appreciable duration, which is renewed whenever the electricity passes. During the auroras of 1S59, at numerous stations both in America and Europe, similar sparks were drawn from 'the telegraph wires when no battery was attached.

(2.) In pawing through pour conductors electricity develops heat. In like manner, during the auroras of 1859, both in America and Europe, paper, and even wood, were set on fire by the aurorul influence alone.

(3.) When passed through the animal system, electricity communicates a well-known characteristic shock. This electric shock is unlike any effect which can be produced upon the nervous system by any other known method. During the auroras of 1859 several telegraph operators received similar shocks when they touched the telegraph wires.

(4.) A current of electricity decomposes compound substances, resolving them into their elements. Most of the objects with which we arc familiar in daily life are compound; that is, are formed by the union of two or more elementary substances. The current of an ordinary voltaic battery affords one of the most efficient means of resolving compound bodies into their elements. The aurora of 1859 was found to produce similar decompositions. One method of transmitting telegraph signals, which 1144 been successfully practiced, is known by the name of the electrochemical, in which a mark is made upon diemically prepared paper, this mark resulting from the decomposition of the substance with which the paper is impregnated. This substance is decomposed by the passage of an electric current, and the change of color of the paper is the visible proof of the decomposition. The aurora of 1s59 produced the same marks upon chemical paper as are produced by an ordinary voltaic battery.

(5.) A current of electricity develops magnetism in soft iron. The auroras of 1859 developed magnetism in a similar manner, and they developed it in such abundance that it was more than sufficient for the ordinary business of telegraphing.

(6.) A current of electricity deflects a magnetic needle from its ordinary position of rest. In England the usual telegraph signal is made by a magnetic needle, surrounded by a coil of copper wire, so that the needle is deflected by an electric current flowing through the wire. Similar deflections were caused by the auroras of l859, and these deflections were greater than those produced by the telegraph batteries.

These facts clearly demonstrate that the fluid developed by the aurora on telegraph wires is indeed electricity. This electricity may be supposed to be derived from the aurora, either by direct transfer from the air to the wires, or may be induced upon the wires by the action of the auroral fluid at a distance. If we adopt the former supposition, then the light is certainly electric light. If we adopt the latter supposition, then, since we know of but two agents, magnetism and electricity, capable of inducing electricity in a distant conductor, and since magnetism is not luminous, we seem compelled to admit that the auroral light is electric light.

The formation of an auroral corona near the magnetic zenith is the effect of perspective resulting from A great number of luminous beams nil parallel to each other. A large collection of vertical beams, as shown in Figure 15, would exhibit the appearance of a great number of beams diverging from a point directly overhead, as slim It in Figure 16; and a large collection of inclined beams, all parallel to each other, would produce a similar appearance, except that the point of divergence would not be in the zenith, but in that part of the sky toward which the beams were directed. Now the auroral beams arc all parallel to the direction of a magnetic needle freely suspended by its centre of gravity; and they all appear to diverge from that point of the sky toward which the pole of the dipping-needle is directed. The auroral corona or crown appears, therefore, always in the magnetic zenith; and it is not the same crown which is seen at different places any more than it is the same rainbow which is seen by different observers.

The auroral beams are simply spaces which are illumined by the flow of electricity through the upper regions of the atmosphere. During the auroras of 1859 these beams were nearly 500 miles in length, and their lower extremities were elevated about 45 miles above the earth's surface. Their tops inclined toward the south, about 17 degrees in the neighborhood of New York, this being the position which the dipping-needle there assumes.

It was formerly supposed that the electric current necessarily moved in the direction of the axis of the auroral beams; that is, that the electric discharge was from the upper regions of the atmosphere to the earth, or the reverse. Recent discoveries have suggested the possibility of a different explanation. When a stream of electricity flows through a vessel from which the air is almost wholly exhausted, under certain circumstances the light becomes stratified, exhibiting alternately bright and dark hands crossing the electric current at right angles, front which it might be inferred that electricity flowing horizontally through the upper regions of the atmosphere might exhibit alternately bright and dark bands like the auroral beams. Bui this stratification of the electric light is generally ascribed to rapid intermittences in the intensity of the electric discharge, and it is not probable that such intermittcnces can take place in nature with sufficient rapidity to produce it similar effect. It seems, therefore, more probable that auroral beams are the result of a current of electricity traveling in the direction of the axis of the beams.

The slaty appearance of the sky, which is a common feature of great auroral exhibitions, arises from the condensation of the vapor of the air, and this condensed vapor probably exists in the form of minute spicithe of ice or Hakes of snow. Fine flakes of snow have been repeatedly observed to fall during the exhibition of auroras, and this snow only slightly impairs the transparency of the atmosphere without presenting the appearance of clouds. It produces a turbid appearance of the atmosphere, and causes that dark bank which in the United States rests on the northern horizon. This turbidness is more noticeable near the horizon than it is at great elevations, because near the horizon the line of vision traverses a greater extent of this hazy atmosphere. When the aurora covers the whole heavens the entire atmosphere is filled with this haze, and it dark segment may be observed resting on the southern horizon.

Philosophers are by no means agreed as to he origin of atmospheric electricity. It has teen ascribed successively to friction, combusion, and vegetation, but these causes seem enirely inadequate to account for the enormous quantities of electricity sometimes present in he atmosphere.

Evaporation is probably the principal source of atmospheric electricity. The vapor which rises from the ocean in all latitudes, but most abundantly in the equatorial regions of theearth, carries into the upper regions of the atmosphere a considerable quantity of positive electricity, while the negative electricity remains in the earth. This positive electricity, after rising nearly vertically with the ascending currents of the atmosphere, would be conveyed toward either pole by the upper currents of the atmosphere.

The earth and the rarefied air of the upper atmosphere may be regarded as forming the two conducting plates of a condenser, which are separated by an insulating stratum, viz., the lower portion of the atmosphere. The two opposite electricities must then be condensed by their mutual influence, especially in the polar regions, where they approach nearest together; and whenever their tension reaches a certain limit there will be discharges from one conductor to the other. When the air is humid it becomes a partial conductor, and conveys a portion of the electricity of the atmosphere to the earth. On account of the low conducting power of the air, the neutralization of the opposite electricities would not be effected instantaneously, but by successive discharges more or less continuous and variable in intensity. These discharges should frequently occur simultaneously at the two poles, since the electric tension of the earth should he nearly the same at each pole.

Figure 20 represents the system of circulation here supposed; the north and south poles of the earth being denoted by the letters N and S, the direction of the currents being indicated by the direction of the arrows.

When electricity from the upper regions of the atmosphere discharges itself to the earth through an imperfectly conducting medium, the flow can not be every where uniform, but must take place chiefly along certain lines where the resistance is least; and this current mast develop light, forming thus an auroral beam. It might be expected that these beams would have a vertical position, but their position is controlled by the earth's magnetism. The earth is a magnet of vast dimensions, but feeble intensity. It is found that when magnetic forces act upon a perfectly flexible conductor, through which an electric current is passing, the conductor must assume the form of a magnetic curve. Now at each point of the earth's surface the dipping-needle shows the direction of the magnetic curve passing through that point. Hence the axis of an auroral streamer must lie in the magnetic curve which pasaes through its base; and since adjacent streamers are sensibly parallel the beams appear to converge toward the magnetic zenith.

Auroral arches assume a position at right angles to the magnetic meridian in consequence of the influence of the earth's magnetism. Auroral arches generally consist of a collection of short auroral beams all nearly parallel to each other. These beams tend to arrange themselves upon a curve which is perpendicular to the magnetic meridian, forming thus it ring about the magnetic pole. The same law has been discovered to hold true fur a stream of electricity under the influence of an artificial magnet. When electricity escapes front a metallic conductor under a receiver from which the air has been exhausted, and this conductor is the pole of a powerful magnet, the electric light forms a complete luminous ring around this conductor.

In like manner the auroral arch is a part of a luminous ring, nearly parallel to the earth's surface, having the magnetic pole for its centre, and cutting all the magnetic meridians at right angles; and this position results from the influence of the earth's magnetism.

The flashes of light observed in great almond displays are due to inequalities in the motion of the electric currents. On account of the imperfect conducting power of the air, the flow of electricity is not perfectly uniform, but escapes by paroxysms. The flashes of the aurora are therefore feeble flashes of lightning.

The disturbance of the magnetic needle during auroras is due to currents of electricity flowing through the atmosphere or through the earth. A magnetic needle is deflected from its mean position by an electric current flowing near it through a good conductor like a copper wire. A stream of electricity flowing through the earth or the atmosphere must produce a similar effect.

It is probable that the directive power of the magnetic needle is due to electric currents circulating around the globe from east to west. Such currents would cause the magnetic needle every where to assume a position corresponding with what is actually observed; and the existence of such currents has been proved by direct observation.

According to the theory already explained, positive electricity circulates from the equator toward either pole through the upper regions of the atmosphere, and thence through the earth toward the equator, to restore the equilibrium which is continually disturbed by evaporation from the waters of the equatorial seas. This current from the polar regions must modify the regular current which is supposed to be constantly circulating from east to west, resulting in a current from northeast to southwest, in conformity with observations. This current does not, however, flow uninterruptedly from northeast to southwest, but alternates at short intervals with a current in the contrary direction. Such currents of electricity roust produce a continual disturbance of the magnetic needle, and they seem sufficient to account for the disturbances actually observed.

The effect of the aurora upon the telegraph wires is similar to that of electricity in thunderstorms, except in the intensity and steadiness of its action. During thunderstorms the elsetricity of the wires is discharged instantly with a flash of lightning, while during auroras there is sometimes a strong and steady flow of electricity continuing for some minutes.

The geographical distribution of auroras depends chiefly upon the relative intensity of the earth's magnetism in different latitudes. According to experiments with artificial magnets, the electric light tends to form a ring around the pole, and at some distance from it. The electric light should, therefore, be most noticeable in the neighborhood of the earth's magnetic pole, but not directly over it. Auroras are accordingly most abundant along a certain zone which follows nearly a magnetic parallel, being every where nearly at right angles to the magnetic meridian of the place.

The electricity of the lower regions of the atmosphere within the tropics has great intensity, and moves with explosive violence in thunder-showers; and these exhibitions of electricity do not appear to be controlled by the earth's magnetism. But the electricity of the upper regions of the atmosphere is mainly controlled by the magnetic forces of the earth, and hence, in conformity with what we have observed in our experiments with artificial magnets, exhibitions of auroral light are almost entirely unknown in the equatorial regions of the earth.

The diurnal inequality in the frequency of auroras is probably due to the same causes as the diurnal variation in the intensity of atmospheric electricity. The intensity of atmospheric electricity varies with the hour of the day, being least about four o'clock in the morning, and greatest about ten o'clock in the evening. This variation is to be ascribed partly to real changes in the amount of electricity present in the air, and partly to variations in the conducting power of the air. Auroral displays are most frequent about midnight, probably because, on account of the increasing moisture of the air, the electricity accumulated in the upper regions of the atmosphere is most readily transmitted to the earth; and auroral displays become less frequent in the latter part of the night, because this accumulated electricity becomes partially exhausted by the steady discharge to the earth.

Similar considerations will explain in some measure the unequal frequency of auroras in the different months of the year; but it seems pretty well established that this inequality is partly due to the influence of extraterrestrial forces, as explained in the following paragraphs:

The secular inequality in the frequency of auroras seems clearly to indicate the influence of distant celestial bodies upon the electricity of our globe. This is inferred from the fact that the periods of auroras observe laws which are similar to those of two other phenomena, viz., the mean diurnal variation of the magnetic needle, and the frequency of black spots upon the sun's surface.

The magnetic needle has a small diurnal variation, the north end moving a little to the cast in the morning, and toward the west about the middle of the day. The mean daily change of the magnetic needle not only varies with the locality, but also varies from one year to another at the same locality, and these variations exhibit decided evidence of periodicity. In order to exhibit this fact readily to the eye I have drawn upon Figure 19 a curve line which represents these variations in Central Europe during a period of nearly a century. The curve is constructed in a manner similar to that representing the frequency of auroras, and which has been already described. The years are indicated at the top and bottom of the figure, and for each year is drawn a vertical line whose length is proportioned to the mean daily change of the magnetic needle for that year. A curve line is then drawn passing through the several points thus determined. The range of the magnetic needle is indicated by the scale on the left margin of the page; and it is seen that in 1829 the mean daily change of the magnetic needle was about fourteen minutes, while in 1834 it was less than eight minutes. Again, in 1838, it attained another maximum, and in 1844 another minimum, and so on. The undulations of this curve bear a remarkable resemblanee to the curve representing the frequency of auroras. The maxima and the minima of the two phenomena generally occur on the same years, and always nearly at the same date. We can not doubt, then, that one of these phenomena is dependent upon the other, or both are dependent upon a common cause.

The frequency and the extent of black spots upon the sun's surface exhibit a similar periodicity. Some years the sun's disc is never seen entirely free from spots, while in other years, for weeks and even months together, no spots of any kind can be perceived. On Figure 19 is drawn a curve line representing the relative number of spots seen on the sun's surface in different years from 1740 to the present time. It will be perceived that the times of maximum and minimum of the solar spots correspond almost exactly with the times of maximum and minimum of the magnetic variation, and both agree in a remarkable manner with the times of maximum and minimum frequency of auroral displays. We must therefore conclude that these three phenomena — the solar spots, the mean daily range of the magnetic needle, and the frequency of auroras — are somehow dependent the one upon the other, or all are dependent upon a common cause.

The interval from one maximum of the soy lar spots to another maximutn is somewhat variable; but its average value deduced from observations of more than a century is 11 1/5 years. Now what cause can be supposed to operate upon the sun to produce a grand display of black spots every 11 1/9 years? Jupiter makes one revolution about the sun in 11 7/8 years; and there is no other known celestial body having about the same period which could be supposed to exert an influence upon this phenomenon. In what way Jupiter should be capable of disturbing the surface of the sun we do not know, but if this disturbance results from the action of any of the planets, Jupiter is the one to be first suspected on account of his enormous mass. It must, however, bo admitted that time period of Jupiter is a little longer than the average period of the solar spots; whereas, if Jupiter is the cause of these changes, we should expect that the two periods would be identical. It is possible, however, that this small difference may result from a change in the condition of the sun analogous to a change which has been observed in the magnetism of the earth. The earth has the properties of a vast magnet of feeble intensity, and the position of its magnetic poles changes from century to century. In 1576 the magnetic needle at London pointed 11 degrees cast of north; in 1660 it pointed exactly north, and in 1810 it pointed 24 degrees west of north, since which time the needle has been slowly returning to the north. These observations indicate a movement in the magnetic poles of the earth, extending through it period of several centuries.

There are many facts which seem to indicate that the sun is endowed with a magnetic force similar to the earth; and if the sun is really a great magnet, the analogy of our earth would lead us to admit that the position of the poles of this magnet may be subject to a gradual change. Such a supposition would enable us to explain the small difference between the period of Jupiter and that of the solar spots.

If Jupiter exerts so palpable an influence upon the sun's luminous envelope, then we should anticipate a sensible influence from several of the other planets. If the influence of the different planets upon the sun is supposed to follow the generally received law of gravitation, then if we represent the effect of Jupiter upon the sun by 100, that of Venus will be represented by 14, that of Saturn by 9, that of the earth by 8, that of Mercury by 4, and that of Mars, Uranus, and Neptune by less than unity. We are thus naturally led to inquire whether Venus exerts a sensible influence upon the solar spots. The periodic time of Venus is 7½ months, and a careful measurement of the area of the solar spots has shown that the amount of spotted surface upon the sun is subject to a small inequality having a period of 7½ months; and the amount of this inequality is about one-tenth of that ascribed to Jupiter, which is a near approach to the ratio above computed. We find also that the amount of spotted surface upon the sun is subject to a small inequality having a period of 12 months, and this inequality (as deduced from several years' observations) is more than one-tenth of that ascribed to Jupiter, which somewhat exceeds the influence above computed for the earth. The effect of Saturn is apparent in modifying the action of Jupiter. Two revolutions of Saturn are very nearly equal to five of Jupiter; so that after five revolutions of Jupiter (ranking a period of somewhat less than 60 years) the two planets return again to nearly the same relative positions. This gives rise to large disturbances of the sun's surface at intervals of nearly 60 years, and to smaller disturbances during the intermediate period.

Not only are the solar spots most numerous and extensive upon those years in which great auroral displays are most common, but the most remarkable auroral displays have usually been attended by an unusual and nearly simultaneous exhihition of solar spots, if the aurora were the immediate effect of the spotted condition of the sun. If we select the most remarkable auroras of the present century, and compare the condition of the sun's surface during a few days preceding and a few days following the aurora, we shall find that the solar spots were more extensive before than after these auroral displays, and that the spots were most remarkable two or three days before the aurora. The great auroral display of August 28, 1859, was specially remarkable on this account, the solar spots during the week preceding the aurora having been more extensive than they had been for many previous years. Rapid changes were seen to take place in the appearance of these spots, and two observers, independently of each other, noticed patches of intensely bright light to move across a large spot nt the very moment when the magnetic disturbance commenced at Greenwich; and a few hours afterward there succeeded one of the most remarkable magnetic storms, which was felt sitnultaneously over the entire northern and southern hemispheres.

Moreover, if we select all those days in which a very unusual disturbance of the magnetic needle was recorded at the magnetic Observatory of Greenwich, and note time condition of the sun's surface far a few of the preceding and following days, we shall find that the solar spots were generally more extensive before than after these magnetic disturbances; and the greatest exhibition of solar spots preceded by one or two days the unusual disturbances of the magnetic needle. These facts will scarcely permit us to doubt that an unusually disturbed condition of the sun's surface is one of the causes (if not the principal cause) of magnetic disturbances and also of great auroral displays upon the earth.

We seem then naturally conducted to the following hypothesis: not only the earth but each of the planets and also the sun is endoved with a magnetic force, having poles which at each instant occupy a determinate position; but this position is subject to a slow change front year to year. As these magnetic bodies advance in their orbits, each body disturbs the magnetism of every other body in the solar system. The disturbance of the sun's magnetism gives rise to commotiona in its luminous envelope, causing openings of variable extent, and these disturbances follow periods corresponding to the times of revolution of the disturbing bodies. Jupiter is the great disturber, and accordingly the solar spots exhibit alternately maxima and minima at intervals corresponding to the time of one revolution of Jupiter. Saturn exerts a small but neverthelesss appreciable influence, resulting in unusually large disturbances of the sun's envelope at intervals of five revolutions of Jupiter. Venus and the earth also produce small disturbances of the sun's envelope, causing small undulations in the curve which represents the amount of spotted surface of the sun. The hypothesis thus stated enables us to explain with tolerable precision the principal fluctuations in the sun's luminous envelope during the last 150 years.

These disturbances of the sun's surface are accompanied by disturbances in the electrical condition of the earth. The phenomena might perhaps be best explained by supposing a flow of electricity from the sun to the earth, and that this flow is proportioned to the extent of the disturbance of the sun's surface as indicated by the prevalence of dark spots. If such an hypothesis should be thought inadmissible, then it seems necessary to suppose that during these periods of unusual solar disturbance the sun's magnetism acts with unusual efficiency upon the earth, decomposing its natural electricities, causing an accumulation of positive electricity about one magnetic pole and negative electricity about the opposite magnetic pole. This would lead to grand auroral displays recurring at intervals corresponding with the periods of the solar spots.

By the daily rotation of the earth the position of the great solar magnet with reference to a magnetic needle upon the earth, is continually changing, and this causes a daily oscillation in the position of our magnetic needle. An unusual disturbance of the electricity of the earth causes corresponding disturbances in the position of the magnetic needle, and thus the mean daily range of the magnetic needle exhibits fluctuations whose periods correspond to those of the solar spots.

It will thus be seen that our hypothesis conneets together in a simple manner three different phenomena, which apparently are quite unlike, and enables us to render a satisfactory account of their principal peculiarities. If this hypothesis is correct in its essential features, then we can no longer regard auroral displays as exclusively atmospheric phenomena, but they are to a great extent the result of the influence of celestial forces, while their movements are controlled by the magnetic power of the earth. We should then naturally expect that opposite electricities would be driven toward the opposite magnetic poles of the earth, and that the system of circulation of electric currents would be, not such as is exhibited in Figure 20, but such as is shown iu Figure 21, where N and S are supposed to represent the north and south magnetic poles of the earth, a and s the poles of an imaginary magnet representing the magnetism of the earth. The east and west bands represent auroral arches, upon which stand auroral streamers. The dotted lines represent magnetic curves passing from auroral streamers in the southern hemisphere to streamers in the northern hemisphere, showing the path pursued by the currents of electricity in passing from one hemisphere to the other above the atmosphere. This is understood to be the system of circulation advocated by Mr. B. V. Marsh of Philadelphia. It agrees substantially with that represented by Figure 20, so far as the phenomena can be observed in the northern hemisphere; but they lead to different results in the southern hemisphere. We have not the requisite observations from the southern hemisphere to enable us to decide between these two hypotheses. Such observations might easily be made upon the telegraph wires of Australia; and if during some future auroral display such observation, could be obtained, they would furnish a true experimentum crucis to decide between the two hypotheses.

The hypothesis which has now been stated readily explains the simultaneous displays of great auroras in both hemispheres. We can not explain the great auroral displays in the northern hemisphere by supposing that the electricity of the atmosphere is temporarily diverted from one hemisphere to the other, for the mean daily range of the magnetic needle exhibits its maxima simultaneously in both hemispheres; neither can we suppose that the absolute amount of electricity for the entire globe, as developed by evaporation from the water of the ocean, should undergo great periodical variations, fur the mean temperature of the earth's surface does not change sensibly from one year to another. But if these great auroral displays result from the direct action of the sun, through the agency of its magnetism, such an effect should take place simultaneously in both hemispheres, conformably with the results of observation.

It is not claimed that the hypothesis which has here been proposed to explain the inequalities In the frequency and brilliancy of auroras is to be regarded as fully established. Further researches and discoveries may require us to modify it in some important particulars, or even to abandon it altogether. Such an hypothesis, however, is not without its value, since it enables us to clarify the known facts, and even to predict results which have not hitherto attracted the attention of observers. The true philosopher will not undervalue hypotheses, which have often proved of great value in the promotion of science, but he should be ready to abandon any hypothesis as soon as the progress of science shows it to be no longer tenable.