The Manufacturer and Builder 9, 1870
The present dull times offer a favorable opportunity for thorougly repairing shops, stores, etc. in preparation for the anticipated revival of active business this fall. Nothing is more truly economical, though few things are more neglected than the timely use of paint. Ever since the close of the war, the houses of this country have both growing shabby, because people were saving their money in these hard times, by avoiding repairs as far as possible. But there is a limit to all this act of temporary economy. Paint is necessary to protect as well as to ornament the structure to which it is applied, and we are now evidently on the verge of a grand national house-cleaning and repairing epoch.
Persons desiring to obtain cheap, durable, and convenient colors are cordially recommended to try the ready-made "Railroad" paints of Masury & Whiton, 111 Fulton street, New-York. Mr. J. W. Masury, of this house, is the author of the well-known work, How Shall we Paint our Houses? which has been already praised in our columbs as combining, in a remarkable degree, practical value as a manual and literary finish as an essay.
Coloriasto on väriaiheisten tekstien (ja kuvien) verkkoarkisto
(Archive for colour themed articles and images)
INDEX: coloriasto.net
27.2.14
Poisonous Painted Pails.
The Manufacturer and Builder 9, 1870
The practice of painting the inside of wooden pails, to prevent leakage, is only to be recommended when the paint contains no white-lead or baryta, both of which we found in the paint of some pails examined lately. All over the country these pails are used in the kitchen, and although neither lead nor baryta are very soluble in water, yet frequently the paint peels off in flakes, and may have serious consequences when getting into the tea-kettle, and thus into the food. The paint for such purposes should be either whiting or gypsum, if required white; ut most preferable in ochre, against which the sanitary objection can not be raised.
The practice of painting the inside of wooden pails, to prevent leakage, is only to be recommended when the paint contains no white-lead or baryta, both of which we found in the paint of some pails examined lately. All over the country these pails are used in the kitchen, and although neither lead nor baryta are very soluble in water, yet frequently the paint peels off in flakes, and may have serious consequences when getting into the tea-kettle, and thus into the food. The paint for such purposes should be either whiting or gypsum, if required white; ut most preferable in ochre, against which the sanitary objection can not be raised.
26.2.14
Zinc Whitewash.
The Manufacturer and Builder 7, 1870
Mix oxide of zing with common size, and apply it with a whitewash brush to the ceiling. After this, apply in the same manner a wash of the chloride of zinc, which will combine with the oxide to form a smooth cement with a shining surface.
Mix oxide of zing with common size, and apply it with a whitewash brush to the ceiling. After this, apply in the same manner a wash of the chloride of zinc, which will combine with the oxide to form a smooth cement with a shining surface.
25.2.14
Finska Handarbetets Vänner sammanträddetill årsmöte i går.
Hufvudstadsbladet 108A, 26.4.1903
Finska Handarbetets Vänner sammanträddetill årsmöte i går. Föreningens sträfvan, heter det i redogörelsen för verksambeten under det förflutna året, att väcka intresset för den inhemska textila konstslöjdens utveckling i estetiskt och tekniskt afseende ha ej varit fruktlösa att döma af att allt flera krafter begynt skänka föreningen sin medverkan. Till föreningens tvänne pristäflingarhade mönsterritningar inlämnats af omkr. 200 personer. Tio pris utdelades och 15 icke prisbelönade mönster inlöstes.
Å föreningens väfafdelninghar undei fjolåret arbete och tid mer än förut egnats åt gobelinväfnad, hvartill mönster så godt som uteslutande levererats af artisten V. Blomstedt, som äfven öfvervakat utförandet. Tyvärr är herr Blomstedt för framtiden, sedan han blifvit lärare i konstföreningens ritskola, hindrad egna så mycken tid som hittills åt föreningen. Arbetets praktiska utförande har fortsättningsvis ledts af föreningens väfverska fru A. Helén.
Sedan föreningen under fjolåret erhållitett statsanslag om 2,400 mk under tre år, bar densamma sett sig i stånd att förverkligadet länge närda önskningsmålet att återupptaga det fordom allmänt kända förtärandet att färga garn med växtfärger, hvarigenom åstadkommas hållbarare, mjukare och mera harmoniska färger. För ändamålet sändes föreningens väfverska fru Helén till Norge, där hon under maj månad i Kristiania genomgick en metodisk kurs i detta slags färgningskonst, hvarefter hon, efter återkomsten till hemlandet, under några veckor reste omkring i landsorten, företrädesvis Nyland men äfven trakterna kring Tavastehus, Villmanstrand och Viborg, där allmogen uppmanades att insamla och torka växter, löf, bark, mossa m. m. för ändamålet. Sedan de insamlade växterna på hösten anländt till Helsingfors öppnades färgeriet, som sedan dess arbetat med godt resultat. Efter vunnen större erfarenhet och sedan allmänhetens intresse för saken blifvit väckt är meningen att utgifva en färgbok samt anordna färgningskurser för elever, hvilka i sin tur i byggderna kunna sprida konsten.
Under vintern har färgats 400 kg garn af inhemsk ull i öfver 100 valörer, al hvilket föreningen låtit väfva ryor samt fyra bildvätnader.
Föreningenhar under året varit representerad vid konstindustriella utställningen i S:t Petersburg genom ett antal af slöjdföreningen för ändamålet inköpta väfnader, daraf par gobeliner. Pä grund häraf tilldelades föreningens väfverska diplom. Till konstföreningens i Riga utställning hösten 1902 sände föreningen älven några af sina arbeten.
Medlemsantalet har under året uppgått till 199, däraf 28 ständiga samt deras sammanlagda afgitter till 855 mk, af hvilket belopp 570 mk återgå i form af arbeten utlottade vid den i sammanhang med årsmötet försiggångna utlottningen af arbeten.
Föreningens direktion beviljados ansvarsfrihet lör förvaltningen töreningens angelägenheter.
Till medlemmar i direktionen åter valdes de utlottade ledamöterna ark U. Nyström, fröken A. Sahlsten och grefve L. Sparre.
Till revisorer utsagos protokollssekreteraren S. Aejmelaeus och bokföråren E. Tilvis.
Finska Handarbetets Vänner sammanträddetill årsmöte i går. Föreningens sträfvan, heter det i redogörelsen för verksambeten under det förflutna året, att väcka intresset för den inhemska textila konstslöjdens utveckling i estetiskt och tekniskt afseende ha ej varit fruktlösa att döma af att allt flera krafter begynt skänka föreningen sin medverkan. Till föreningens tvänne pristäflingarhade mönsterritningar inlämnats af omkr. 200 personer. Tio pris utdelades och 15 icke prisbelönade mönster inlöstes.
Å föreningens väfafdelninghar undei fjolåret arbete och tid mer än förut egnats åt gobelinväfnad, hvartill mönster så godt som uteslutande levererats af artisten V. Blomstedt, som äfven öfvervakat utförandet. Tyvärr är herr Blomstedt för framtiden, sedan han blifvit lärare i konstföreningens ritskola, hindrad egna så mycken tid som hittills åt föreningen. Arbetets praktiska utförande har fortsättningsvis ledts af föreningens väfverska fru A. Helén.
Sedan föreningen under fjolåret erhållitett statsanslag om 2,400 mk under tre år, bar densamma sett sig i stånd att förverkligadet länge närda önskningsmålet att återupptaga det fordom allmänt kända förtärandet att färga garn med växtfärger, hvarigenom åstadkommas hållbarare, mjukare och mera harmoniska färger. För ändamålet sändes föreningens väfverska fru Helén till Norge, där hon under maj månad i Kristiania genomgick en metodisk kurs i detta slags färgningskonst, hvarefter hon, efter återkomsten till hemlandet, under några veckor reste omkring i landsorten, företrädesvis Nyland men äfven trakterna kring Tavastehus, Villmanstrand och Viborg, där allmogen uppmanades att insamla och torka växter, löf, bark, mossa m. m. för ändamålet. Sedan de insamlade växterna på hösten anländt till Helsingfors öppnades färgeriet, som sedan dess arbetat med godt resultat. Efter vunnen större erfarenhet och sedan allmänhetens intresse för saken blifvit väckt är meningen att utgifva en färgbok samt anordna färgningskurser för elever, hvilka i sin tur i byggderna kunna sprida konsten.
Under vintern har färgats 400 kg garn af inhemsk ull i öfver 100 valörer, al hvilket föreningen låtit väfva ryor samt fyra bildvätnader.
Föreningenhar under året varit representerad vid konstindustriella utställningen i S:t Petersburg genom ett antal af slöjdföreningen för ändamålet inköpta väfnader, daraf par gobeliner. Pä grund häraf tilldelades föreningens väfverska diplom. Till konstföreningens i Riga utställning hösten 1902 sände föreningen älven några af sina arbeten.
Medlemsantalet har under året uppgått till 199, däraf 28 ständiga samt deras sammanlagda afgitter till 855 mk, af hvilket belopp 570 mk återgå i form af arbeten utlottade vid den i sammanhang med årsmötet försiggångna utlottningen af arbeten.
Föreningens direktion beviljados ansvarsfrihet lör förvaltningen töreningens angelägenheter.
Till medlemmar i direktionen åter valdes de utlottade ledamöterna ark U. Nyström, fröken A. Sahlsten och grefve L. Sparre.
Till revisorer utsagos protokollssekreteraren S. Aejmelaeus och bokföråren E. Tilvis.
24.2.14
Queries. A good paste for blacking boots.
Manufacturer and builder 10, 1869
A good paste for blacking boots is made from 20 parts tincture boneblack, 20 parts syrup, 3 parts castor-oil, and 1 part sulphuric acis, well mixed. A cheaper prescription is 10 parts mineed potatoes treated with 1 part strong sulphuric acid till the whole mass is lustrous black, then add 4 parts of boneblack and 2 parts of any kind of fat, lard, or oil.
A good paste for blacking boots is made from 20 parts tincture boneblack, 20 parts syrup, 3 parts castor-oil, and 1 part sulphuric acis, well mixed. A cheaper prescription is 10 parts mineed potatoes treated with 1 part strong sulphuric acid till the whole mass is lustrous black, then add 4 parts of boneblack and 2 parts of any kind of fat, lard, or oil.
23.2.14
Queries. Staining pine wood the color of mahogany.
Manufacturer and builder 10, 1869
You may stain pine wood the color of mahogany by mixing linseed oil with burnt sienna, which you may buy from almost any house-painter, ground in oil and put up in small tin cans; to imitate rosewood, you take burnt amber or Van Dyke beown, and put in darker or lighter veins with lampblack and burnst sienna, but be careful to put ot on thin, so as to stain the wood only and not to cover it with paint. You may also stain it with water-color, but then you have to oil it afterward, before varnishing; our method dispenses with one operation, as it combines the oiling and staining.
You may stain pine wood the color of mahogany by mixing linseed oil with burnt sienna, which you may buy from almost any house-painter, ground in oil and put up in small tin cans; to imitate rosewood, you take burnt amber or Van Dyke beown, and put in darker or lighter veins with lampblack and burnst sienna, but be careful to put ot on thin, so as to stain the wood only and not to cover it with paint. You may also stain it with water-color, but then you have to oil it afterward, before varnishing; our method dispenses with one operation, as it combines the oiling and staining.
22.2.14
Finska Handarbetets Vänner.
Björneborgs Tidning 36B, 3.4.1902
Bestyrelsen för föreningen Finska Handarbetets Vänner har anhållit för spridande af kunskap inom landet i färgning med växtfärger samt för inrättande af ett färgeri om ett anslag i ett för alt af 1,200 mk samt ett årligt anslag af 2,500 mk att utgå under 3 års tid.
Bestyrelsen för föreningen Finska Handarbetets Vänner har anhållit för spridande af kunskap inom landet i färgning med växtfärger samt för inrättande af ett färgeri om ett anslag i ett för alt af 1,200 mk samt ett årligt anslag af 2,500 mk att utgå under 3 års tid.
21.2.14
Colored Marbles.
Manufacturer and builder 5, 1869
The use of frescoes, hard polished woods, or elaborately colored and tinted papers, for internal decorations is likely soon to give place, in part at least, to a recent discovery, by means of which, marble, the coarsest as well as the finest, can be colored in every variety of shade. The coloring of marble was long placed among the "Lost Arts," but it is a generally received opinion that the richly colored marbles found occasionally among the works of the ancients are not the productions of art, but of nature, the quarries of which are lost to us. The claims set forth in recent times for the production of colored marbles have always turned out to be for mere surface coloring, which in a short time and with but slight friction wore off. Some colored marbles exist in a natural state, but their rarity makes them very expensive, and they are seldom or never used, except for fine mantels in the residences of the opulent, or for ornamental vases and articles of similar kind. The naturally colored marbles are the Sienna, an Italian marble of a uniform yellow, or rather we should say a buff color, though it is at times found beautifully clouded and veined; the Lisbon, a Portuguese marble, of a delicate flesh color rarely approaching to the deepness of pink; it is found also of a dove color, varying from that to slate. In the Pyrenees is found a very fine marble of dull or brick red; the so-called Egyptian marble, which in reality comes from Italy, is found black, sometimes veined with gold. In addition to these are the Brocatelle, a Spanish marble, and our own Tennessee colored marbles. These marbles, though well known to us, are so costly as to be far beyond the reach of any but the most wealthy. An objection may be found to them in the fact that they are never obtained in large blocks, the consequence of which is, that mantels made of Sienna, or other of the finest and rarest marbles, are built of pieces of uncertain and irregular size and shape, the joints of which, however well cemented, will, in course of time, show, and detract greatly from their beauty.
The method of coloring marbles already referred to, gives us not only perfect imitations of the naturally colored marbles, but others of every conceivable tint or shade of blue, green, orange, purple, ruby, or, indeed, any color desired, while it brings out many beauties of the marble not observable in it in the natural state. The objection to the hitherto so-called colored marbles does not exist in the stone colored by this process, as the coloring matter permeates the whole mass, color-ing it completely through. The process consists simply in placing the slab in a shallow bath, the liquid being drawn by capillary attraction into the marble so as to thoroughly permeate it. The slab, if broken, will show in its inner parts the same degree and intensity of color as at its surface. The marble thus colored not only retains its color, but that color is deepened and intensified by time. It can be colored in the rough or in the polished slab, and in the former can be highly polished, while in the latter the polish can be improved upon. In the process of coloring, the interstices between the molecules of the marble are filled by the coloring matter, rendering the substance harder, more durable, more impervious to damp, an capable of higher and better finish, while the color, not being superficial, is permanent. These considerations are sufficient to show that the colored marbles, produced by the new method, will be of great value in architectural decorations, either internal or external, as specimens have been exposed upward of two years to all the variations of climate and weather, which shows that time improves the colors instead of injuring them.
The use of frescoes, hard polished woods, or elaborately colored and tinted papers, for internal decorations is likely soon to give place, in part at least, to a recent discovery, by means of which, marble, the coarsest as well as the finest, can be colored in every variety of shade. The coloring of marble was long placed among the "Lost Arts," but it is a generally received opinion that the richly colored marbles found occasionally among the works of the ancients are not the productions of art, but of nature, the quarries of which are lost to us. The claims set forth in recent times for the production of colored marbles have always turned out to be for mere surface coloring, which in a short time and with but slight friction wore off. Some colored marbles exist in a natural state, but their rarity makes them very expensive, and they are seldom or never used, except for fine mantels in the residences of the opulent, or for ornamental vases and articles of similar kind. The naturally colored marbles are the Sienna, an Italian marble of a uniform yellow, or rather we should say a buff color, though it is at times found beautifully clouded and veined; the Lisbon, a Portuguese marble, of a delicate flesh color rarely approaching to the deepness of pink; it is found also of a dove color, varying from that to slate. In the Pyrenees is found a very fine marble of dull or brick red; the so-called Egyptian marble, which in reality comes from Italy, is found black, sometimes veined with gold. In addition to these are the Brocatelle, a Spanish marble, and our own Tennessee colored marbles. These marbles, though well known to us, are so costly as to be far beyond the reach of any but the most wealthy. An objection may be found to them in the fact that they are never obtained in large blocks, the consequence of which is, that mantels made of Sienna, or other of the finest and rarest marbles, are built of pieces of uncertain and irregular size and shape, the joints of which, however well cemented, will, in course of time, show, and detract greatly from their beauty.
The method of coloring marbles already referred to, gives us not only perfect imitations of the naturally colored marbles, but others of every conceivable tint or shade of blue, green, orange, purple, ruby, or, indeed, any color desired, while it brings out many beauties of the marble not observable in it in the natural state. The objection to the hitherto so-called colored marbles does not exist in the stone colored by this process, as the coloring matter permeates the whole mass, color-ing it completely through. The process consists simply in placing the slab in a shallow bath, the liquid being drawn by capillary attraction into the marble so as to thoroughly permeate it. The slab, if broken, will show in its inner parts the same degree and intensity of color as at its surface. The marble thus colored not only retains its color, but that color is deepened and intensified by time. It can be colored in the rough or in the polished slab, and in the former can be highly polished, while in the latter the polish can be improved upon. In the process of coloring, the interstices between the molecules of the marble are filled by the coloring matter, rendering the substance harder, more durable, more impervious to damp, an capable of higher and better finish, while the color, not being superficial, is permanent. These considerations are sufficient to show that the colored marbles, produced by the new method, will be of great value in architectural decorations, either internal or external, as specimens have been exposed upward of two years to all the variations of climate and weather, which shows that time improves the colors instead of injuring them.
19.2.14
Varnishes - their Nature and Manufacture.
Manufacturer and builder 6, 1869
Under the general term varnishes are comprises those solutions of gums which, when allowed to dry in thin layers, leave the gum as an adherent covering, either in combination with the solvent or otherwise. They are employed in all instances where it is desired to give to solid surfaces a brilliancy which they would not otherwise possess. When of good quality, varnish also preserves from the effects of air and moisture the articles to which it is applied. A good varnish should possess great hardness, combined with a certain degree of tenacity, so as to afford polish, and it should be unalterable of atmospheric influences. It may be colored or not. The resins and gums usually employed are: mastic, amber, copal, shellac, sandarac, elemi, colophony, and asphalt. The menstrua are: ordinary and methylic alcohol, spirits of wood, spirits of turpentine, linseed and poppy oil. When alcohol-like solvents are employed, the products are termed "spirit varnishes ;" and when oils are the vehicles used, "fat or oil varnishes" are produced. Time for which alcohol, ether, or benzol have been used are least durable. Those made by spirits are more durable, as the turpentine becomes partly oxidized and forms with the gum a tough and very durable compound of turpentine. Such varnishes are seldom used alone, but generally employed in combination with oil varnishes. With respect to durability, especially in relation to heat and moisture, the latter are excelled by none.
The manufacture of spirit varnishes is exceedingly simple, it being only necessary to pulverize the gums finely and to heat them slightly with the solvent, while, in order to prevent the balling together of the resins, they are mixed with a uniformly coarse glass powder. The solution itself is mostly effected in a distilling apparatus of copper, which is so arranged that the volatilized liquid may uninterruptedly flow back in a condensed state. Great care ought to be paid to the assortment and selection of the resins. The lightest colored pieces should be reserved for fine and colorless varnishes, while the colored pieces should be put aside for the ordinary kinds. Before using them, they should be washed in hot water to remove impurities, and then well dried. In order to obtain clear varnishes, it is also necessary to allow Ahem to remain quiet for some time, after which they are filtered. If previously digested with freshly burned and cooled bone-black, they gain greatly in brilliancy. The use of paper in filtering should be avoided, as the varnishes run too slowly through it, and moreover, they do not become perfectly clear. A far better plan consists in stopping the funnel with a bunch of cotton, and allowing the liquid to flow through the same. In the preparation of fat or oil varnishes, for which copal and amber are most extensively used, great care ought 5o be paid to the selection of the oil, which should be cold-pressed, clear, and of considerable age. These three requisites being complied with, good varnishes may always be expected, provided proper care has in other respects been bestowed upon their manufacture. To cause the resins to be more easily taken up, they are to be previously melted. The most convenient apparatus for this purpose consists of a copper cylinder which terminates at its lower end in a funnel, and may be well closed with a lid. When the cylinder has been filled with the gum, which is poured on a perforated plate resting in the funnel, it is set into a small furnace, in such a manner that the tube of the funnel may pass through the grates and through an aperture in the ashbox. Under the latter is placed a vessel containing the oil, which is heated by a charcoal fire. If the cylinder is now surrounded with glowing coals, the resin melts and drops into the oil, by which it is immediately dissolved.
The boiling of the oil as well as the solution of the resin is effected in copper pans, which should be more shallow titan deep; they must be of a capacity sufficient for double the quantity of the charge of oil. The varnish should be made in dry weather; otherwise moisture is absorbed, and its transparency and drying quality impaired. With respect to the mode of beating, a charcoal fire serves this purpose best, as it yields a uniform heat, and is not likely to overheat tint sides of the pan. The pan is set into an iron ring, which should only be so wide as to leave the lower part of the kettle free. The oil is heated very gradually until it commences to simmer, when the scum is skimmed off. It was at this stage in the old method that the dryers (litharge, minium, oxide of zinc, etc.) were added. The heat is then gradually increased until the oil bubbles and emits a gaseous vapor, which inflames when a lighted taper is held near by. During the boiling, it is a good plan to stir the oil constantly and to bring it as much as possible in contact with the air. This may be effected to a sufficient extent by ladling a part out and letting it again flow in a stream into the kettle. As to the quantity of copal which oil will bear, it is about one half its own weight - ten pounds of copal requiring at least twenty pounds of oil. If the oil varnish is to be mixed with spirits of turpentine, the latter must be added during continual stirring. If the boiling-pan is not sufficiently spacious, the mixture must be effected in another vessel, and the spirits are to be added while the mixture of oil and resin is still hot. The boiling-pan is finally well wiped out with some spirits of turpentine, and then scoured with a rag which has been dipped into powdered pumice-stone. In this manner all other utensils are cleansed, then rinsed with pure spirits of turpentine, and at last dried with a clean cloth.
Under the general term varnishes are comprises those solutions of gums which, when allowed to dry in thin layers, leave the gum as an adherent covering, either in combination with the solvent or otherwise. They are employed in all instances where it is desired to give to solid surfaces a brilliancy which they would not otherwise possess. When of good quality, varnish also preserves from the effects of air and moisture the articles to which it is applied. A good varnish should possess great hardness, combined with a certain degree of tenacity, so as to afford polish, and it should be unalterable of atmospheric influences. It may be colored or not. The resins and gums usually employed are: mastic, amber, copal, shellac, sandarac, elemi, colophony, and asphalt. The menstrua are: ordinary and methylic alcohol, spirits of wood, spirits of turpentine, linseed and poppy oil. When alcohol-like solvents are employed, the products are termed "spirit varnishes ;" and when oils are the vehicles used, "fat or oil varnishes" are produced. Time for which alcohol, ether, or benzol have been used are least durable. Those made by spirits are more durable, as the turpentine becomes partly oxidized and forms with the gum a tough and very durable compound of turpentine. Such varnishes are seldom used alone, but generally employed in combination with oil varnishes. With respect to durability, especially in relation to heat and moisture, the latter are excelled by none.
The manufacture of spirit varnishes is exceedingly simple, it being only necessary to pulverize the gums finely and to heat them slightly with the solvent, while, in order to prevent the balling together of the resins, they are mixed with a uniformly coarse glass powder. The solution itself is mostly effected in a distilling apparatus of copper, which is so arranged that the volatilized liquid may uninterruptedly flow back in a condensed state. Great care ought to be paid to the assortment and selection of the resins. The lightest colored pieces should be reserved for fine and colorless varnishes, while the colored pieces should be put aside for the ordinary kinds. Before using them, they should be washed in hot water to remove impurities, and then well dried. In order to obtain clear varnishes, it is also necessary to allow Ahem to remain quiet for some time, after which they are filtered. If previously digested with freshly burned and cooled bone-black, they gain greatly in brilliancy. The use of paper in filtering should be avoided, as the varnishes run too slowly through it, and moreover, they do not become perfectly clear. A far better plan consists in stopping the funnel with a bunch of cotton, and allowing the liquid to flow through the same. In the preparation of fat or oil varnishes, for which copal and amber are most extensively used, great care ought 5o be paid to the selection of the oil, which should be cold-pressed, clear, and of considerable age. These three requisites being complied with, good varnishes may always be expected, provided proper care has in other respects been bestowed upon their manufacture. To cause the resins to be more easily taken up, they are to be previously melted. The most convenient apparatus for this purpose consists of a copper cylinder which terminates at its lower end in a funnel, and may be well closed with a lid. When the cylinder has been filled with the gum, which is poured on a perforated plate resting in the funnel, it is set into a small furnace, in such a manner that the tube of the funnel may pass through the grates and through an aperture in the ashbox. Under the latter is placed a vessel containing the oil, which is heated by a charcoal fire. If the cylinder is now surrounded with glowing coals, the resin melts and drops into the oil, by which it is immediately dissolved.
The boiling of the oil as well as the solution of the resin is effected in copper pans, which should be more shallow titan deep; they must be of a capacity sufficient for double the quantity of the charge of oil. The varnish should be made in dry weather; otherwise moisture is absorbed, and its transparency and drying quality impaired. With respect to the mode of beating, a charcoal fire serves this purpose best, as it yields a uniform heat, and is not likely to overheat tint sides of the pan. The pan is set into an iron ring, which should only be so wide as to leave the lower part of the kettle free. The oil is heated very gradually until it commences to simmer, when the scum is skimmed off. It was at this stage in the old method that the dryers (litharge, minium, oxide of zinc, etc.) were added. The heat is then gradually increased until the oil bubbles and emits a gaseous vapor, which inflames when a lighted taper is held near by. During the boiling, it is a good plan to stir the oil constantly and to bring it as much as possible in contact with the air. This may be effected to a sufficient extent by ladling a part out and letting it again flow in a stream into the kettle. As to the quantity of copal which oil will bear, it is about one half its own weight - ten pounds of copal requiring at least twenty pounds of oil. If the oil varnish is to be mixed with spirits of turpentine, the latter must be added during continual stirring. If the boiling-pan is not sufficiently spacious, the mixture must be effected in another vessel, and the spirits are to be added while the mixture of oil and resin is still hot. The boiling-pan is finally well wiped out with some spirits of turpentine, and then scoured with a rag which has been dipped into powdered pumice-stone. In this manner all other utensils are cleansed, then rinsed with pure spirits of turpentine, and at last dried with a clean cloth.
18.2.14
What Paint shall we Use?
Manufacturer and builder 6, 1869
Every reader of rural literature must remember the unmitigated ridicule with which Downing, the apos-tle of rural art, attacked our bright white houses and bright green blinds - houses which, in general, appear so fresh and neat that some one has said that they looked as if they had been put up on Saturday night and were to be taken down again on Monday morning. So long as this taste prevailed, there was little room for the exercise of choice in the selection of paint; at least, so far as the preponderating color - the white - was concerned. In regard to the greens, a little greater latitude was perhaps allowed; but the white almost invariably consisted of the well-known compound of lead. At the present time, our tastes in this direction have so far changed that we are no longer under the necessity of confining ourselves to any special chemical. compound; but are at full liberty to choose that which not only presents the best appearance but is actually best in other respects. For while the application of paint is of great importance as a mere beautifier, it is of equal, or perhaps greater importance as a preserver.
Paint as it flows from the brush of the craftsman, in general consists of some finely-powdered and compara-tively indestructible substance mixed with oil. To this mixture are sometimes added various matters, for the purpose of causing the paint to dry quickly, to spread freely, etc.; but in general all these admixtures are regarded as injurious, and are merely tolerated on account of the special effects produced by them. For in-door work, it is true, they are not so objectionable. The objects being in this case protected from the effects of the weather, the durability of the paint becomes sufficiently great to satisfy any reasonable demand; and it is, therefore, the habit of painters to use a greater proportion of dryers and turpentine in in-door work thin would be allowable for articles exposed to sun, winds, and storms. As a medium for the application of paint, nothing is equal to good linseed-oil, either raw or boiled. The boiled oil dries most rapidly and is most generally used; but for out-door work the raw oil answers very well, and is, perhaps, more durable. Oil which has been boiled too much, which has had too much of the drying property imparted to it, is, in reality, injured thereby, and does not last as long as it otherwise would have done. But oil alone will not form a paint. It has been denied that it can form even the basis of a paint, though this latter position is one which savors more of dialectic subtlety than of practical clearness of vision. One thing absolutely certain is, that without good oil the best paint is utterly worthless as a preservative. It would be possible to tint a house or a wagon with Venetian red, mixed with water, and if a little milk or blood were added to it, it would not rub off readily when dry; and yet, it would be a poor preservative, although the same paint mixed wills linseed oil would furnish a preservative coating of the most superior character. The character of the oil, then, is of the greatest importance. Good oil will confer upon paint a durability which can never be attained by the use of a poor article.
To form a paint, the oil must be mixed with some substance in the state of a very fine powder. There are two processes by which the materials used for this purpose are attained in a finely divided state - one being chemical, and the other mechanical. Thus lampblack is deposited as soot in the form of a powder, which is sufficiently fine without any grinding process; while baryta and many of the ochres require to be submitted to the action of powerful grinding mills before they can be used as pigments. In all cases, however, it is necessary that the pigment be finely pulverized, otherwise it will neither work well nor last long.
Thus far we have considered paints chiefly as pre servatives; our reasons for so doing being the fact that, if our selection be judicious in this respect, it is an easy matter to provide for color Within certain reasonable limits. Hitherto, a most singular error has prevailed amongst the non-professional public, who almost invariably regard the compounds of lead as among the most durable paints in existence. Now, it so happens that the beautiful and expensive white lead is one of our least durable pigments, while red lead is far less efficient than Venetian red in affording protection; and indeed, it may in general be affirmed that those earthy paints, or oxides which form mere mechanical mixtures with the boiled oil and have no special chemical action thereon, are invariably the best protectors. Of late years, enormous quantities of these earthy or mineral paints have been produced in this country; and the variety of shades which may be obtained has been so great as to leave little further to be desired in this direction. One company - The Pecora Paint Company of Philadelphia - manufacture a great variety of colors and shades from certain earths which are found in great abundance.
In selecting a paint for the purpose of protecting any object which is fully exposed to the weather, it is well to avoid all very dark colors, as these are apt to absorb the sun's heat to such an extent as to injure the material over which they are spread. This is especially the case in regard to tin roofs, which should always be covered with light colored pigments, as otherwise the roof itself, and the chambers beneath it will be rendered intensely hot. It is true that the very darkest paint - lampblack - has been found a most efficient protector, as may readily be observed on old signs, where the letters, painted in black, have outlasted the white portion of the sign. Even the wood beneath the white paint will, in general, be found to have decayed and become worn by the influence of the weather; while the wood beneath the black paint still remains sound, and elevated above the general surface like the embossed letters on initial paper. But at the same time, it must be remembered that the lampblack has proved thus preservative in spite of its color and not because of it. It is chiefly to the fact of its indestructibility, together with its property of forming no chemical compound with the oil, that it owes its great durability and preservative power. These facts teach us that the best protecting paints are those formed of earthy bases and having comparatively light colors .
Every reader of rural literature must remember the unmitigated ridicule with which Downing, the apos-tle of rural art, attacked our bright white houses and bright green blinds - houses which, in general, appear so fresh and neat that some one has said that they looked as if they had been put up on Saturday night and were to be taken down again on Monday morning. So long as this taste prevailed, there was little room for the exercise of choice in the selection of paint; at least, so far as the preponderating color - the white - was concerned. In regard to the greens, a little greater latitude was perhaps allowed; but the white almost invariably consisted of the well-known compound of lead. At the present time, our tastes in this direction have so far changed that we are no longer under the necessity of confining ourselves to any special chemical. compound; but are at full liberty to choose that which not only presents the best appearance but is actually best in other respects. For while the application of paint is of great importance as a mere beautifier, it is of equal, or perhaps greater importance as a preserver.
Paint as it flows from the brush of the craftsman, in general consists of some finely-powdered and compara-tively indestructible substance mixed with oil. To this mixture are sometimes added various matters, for the purpose of causing the paint to dry quickly, to spread freely, etc.; but in general all these admixtures are regarded as injurious, and are merely tolerated on account of the special effects produced by them. For in-door work, it is true, they are not so objectionable. The objects being in this case protected from the effects of the weather, the durability of the paint becomes sufficiently great to satisfy any reasonable demand; and it is, therefore, the habit of painters to use a greater proportion of dryers and turpentine in in-door work thin would be allowable for articles exposed to sun, winds, and storms. As a medium for the application of paint, nothing is equal to good linseed-oil, either raw or boiled. The boiled oil dries most rapidly and is most generally used; but for out-door work the raw oil answers very well, and is, perhaps, more durable. Oil which has been boiled too much, which has had too much of the drying property imparted to it, is, in reality, injured thereby, and does not last as long as it otherwise would have done. But oil alone will not form a paint. It has been denied that it can form even the basis of a paint, though this latter position is one which savors more of dialectic subtlety than of practical clearness of vision. One thing absolutely certain is, that without good oil the best paint is utterly worthless as a preservative. It would be possible to tint a house or a wagon with Venetian red, mixed with water, and if a little milk or blood were added to it, it would not rub off readily when dry; and yet, it would be a poor preservative, although the same paint mixed wills linseed oil would furnish a preservative coating of the most superior character. The character of the oil, then, is of the greatest importance. Good oil will confer upon paint a durability which can never be attained by the use of a poor article.
To form a paint, the oil must be mixed with some substance in the state of a very fine powder. There are two processes by which the materials used for this purpose are attained in a finely divided state - one being chemical, and the other mechanical. Thus lampblack is deposited as soot in the form of a powder, which is sufficiently fine without any grinding process; while baryta and many of the ochres require to be submitted to the action of powerful grinding mills before they can be used as pigments. In all cases, however, it is necessary that the pigment be finely pulverized, otherwise it will neither work well nor last long.
Thus far we have considered paints chiefly as pre servatives; our reasons for so doing being the fact that, if our selection be judicious in this respect, it is an easy matter to provide for color Within certain reasonable limits. Hitherto, a most singular error has prevailed amongst the non-professional public, who almost invariably regard the compounds of lead as among the most durable paints in existence. Now, it so happens that the beautiful and expensive white lead is one of our least durable pigments, while red lead is far less efficient than Venetian red in affording protection; and indeed, it may in general be affirmed that those earthy paints, or oxides which form mere mechanical mixtures with the boiled oil and have no special chemical action thereon, are invariably the best protectors. Of late years, enormous quantities of these earthy or mineral paints have been produced in this country; and the variety of shades which may be obtained has been so great as to leave little further to be desired in this direction. One company - The Pecora Paint Company of Philadelphia - manufacture a great variety of colors and shades from certain earths which are found in great abundance.
In selecting a paint for the purpose of protecting any object which is fully exposed to the weather, it is well to avoid all very dark colors, as these are apt to absorb the sun's heat to such an extent as to injure the material over which they are spread. This is especially the case in regard to tin roofs, which should always be covered with light colored pigments, as otherwise the roof itself, and the chambers beneath it will be rendered intensely hot. It is true that the very darkest paint - lampblack - has been found a most efficient protector, as may readily be observed on old signs, where the letters, painted in black, have outlasted the white portion of the sign. Even the wood beneath the white paint will, in general, be found to have decayed and become worn by the influence of the weather; while the wood beneath the black paint still remains sound, and elevated above the general surface like the embossed letters on initial paper. But at the same time, it must be remembered that the lampblack has proved thus preservative in spite of its color and not because of it. It is chiefly to the fact of its indestructibility, together with its property of forming no chemical compound with the oil, that it owes its great durability and preservative power. These facts teach us that the best protecting paints are those formed of earthy bases and having comparatively light colors .
17.2.14
The Causes of the Difference in the Color of Bricks.
Manufacturer and builder 1, 1869
A great many erroneous views exist among manufacturers in regard to the chemical combinations to which the color of certain kinds of burnt bricks is to be ascribed. Especially strong is the belief, that white or light-colored bricks can only be produced under the influence of reducing processes, which would change the peroxide of iron into the protoxide; although it is a well-known fact that the protoxide, in its combinations with other bases, forms a far greater variety of more intensely colored compounds than the peroxide. If it were supposed that the metallic protoxide could remain in an uncombined state, a more or less black-colored mass would be the result. It has been surmised that sulphurous acid, resulting from pyritiferous fuel, was an important agent in these supposed deoxidizing processes, although sulphurous acid can never play the part of a reducing agent in the high heat of a brick-kiln. The sulphuric acid, on the contrary, which might have been contained in the clay, would, under these conditions, through the mere influence of heat, be decomposed into sulphurous gas and free oxygen. On the other hand, it is maintained by some manufacturers that white bricks, which assume a green color when half-fused by high heat, owe this change of color and an increase of absolute weight to an addition of oxygen through the influence of protoxide of iron. In this case, as in the former, the reality of facts has been totally reversed; for, according to our investigations, the white bricks contain only peroxide of iron, and the green glazed ones, on the contrary, a considerable quantity of protoxide; the latter, therefore, most have less absolute weight than when they were in the white state, and only the specific gravity of compact pieces has been increased, as, in consequence of a semi-fusion, most of their pores are closed.
Some time since, we analyzed several bricks with reference to the above questions, and recently have given this subject renewed thought. The main question turns upon the determination of the quantity of iron present, and its state of oxidation; since this metal is not only the cause of the various tints; but even of the very existence of color in bricks. The most particular attention, therefore, had to be paid to the determination of the existence of protoxide of iron. This determination, however, presented some difficulties, since hard-burnt bricks are the most refractory of all complex silicious substances. Not even the color of pulverized bricks is materially changed by treatment with sulphuric acid, in a closed glass tube, according to Alex. Mitcherlich's method, at 350 ° centigrade, for eight to ten hours. By treating with hydrofluoric acid, however, a total decomposition is effected, and the protoxide of iron can then be determined In the diluted solution by hypermanganate of potassa. We have made a number of tests to prove that pure hydrofluoric acid (free from arsenic) does not affect the action of the standard potassic solution. J. cooke (Journal of Practical Chemistry, vol. cii., page 456) has also shown that protoxide of iron in a solution of sulphate of iron may be accurately determined in the presence of hydrofluoric acid by hypermanganate of potassa.
The specimens which were first subjected to analysis were two kinds of bricks from the works of Mr. Oppenheim, near Rüdersdorf, and two others from the works of Dr. Kuhnheim, at Freienwalde
on the Oder. The physical properties of these materials and their total contents of iron were as follows:
Rüdersdorf Bricks.
No. 1. Pale red outside, more highly colored inside; moderately hard; manufactured at cherry heat; contain 3.78 per cent of sesquioxide of iron.
No. 2. Pale yellowish white, reddish inside; glazed, harder and firmer than No. 1; manufactured at a considerably higher temperature, verging on that of white heat; contain 4.26 per cent of sesquioxide of iron.
Freienwalde Bricks.
No. 3. Lively red; moderately hard and firm; manufactured at cherry heat; contains 3.79 per cent of sesquioxide of iron.
No. 4. Darker red; more compact and of greater hardness than No. 3; manufactured at a temperature near white heat; contain 4.28 per cent of sesquioxide of iron.
All these four specimens showed, during analyses, reactions so slight of protoxide of iron that its existence, or trace even, is dubious.
These facts show:
1st. That a relatively small percentage of peroxide of iron is sufficient to impart a lively red color to bricks.
2d. That with a perfectly equal percentage of iron, certain kinds of brick remain red when burned at nearly a white heat, whilst others turn pale without a reduction of their peroxide of iron into protoxide.
The last difference is merely based upon a variation in the percentage of lime contained in the raw material. According to analyses made by Mr. Hey, at the laboratory of the Mining Academy at Berlin, under the supervision of Mr. Finkener, the clay of Steinitz-See, from which the Rüdersdorf brick are made, contains 8.69 per cent, that of Freienwalde only 2.47 per cent of lime, while the quantities of magnesia and alkalies are very minute and equal in boils cases. The oxide of calcium, (lime,) if contained in considerable quantity in the raw material, acts, under the influence of high heat, upon the peroxide of iron, predisposing it to enter the combination of a polybasic white silicate. It can not be supposed that a ferrate of lime is formed while silicic acid is present in such decided excess. Besides, the pure compounds of this kind are reddish-brown. The magnesia, which exists mostly in insignificant quantities, does not seem to play an important part. According to the experience of many manufacturers, pale bricks are produced, especially in those parts of the kiln where smoke has had a chance to collect or to touch the clay. The cause of this is the higher local temperature, resulting from a more intimate contact with combustible particles.
If a brick containing but little lime changes in color from light red to dark red, an alteration only of the physical state of aggregation of the free uncomnined peroxide of iron takes place; and this substance is the only cause of color in all kinds of brick.
My next communication will treat of green and dark-colored clinkers.
A great many erroneous views exist among manufacturers in regard to the chemical combinations to which the color of certain kinds of burnt bricks is to be ascribed. Especially strong is the belief, that white or light-colored bricks can only be produced under the influence of reducing processes, which would change the peroxide of iron into the protoxide; although it is a well-known fact that the protoxide, in its combinations with other bases, forms a far greater variety of more intensely colored compounds than the peroxide. If it were supposed that the metallic protoxide could remain in an uncombined state, a more or less black-colored mass would be the result. It has been surmised that sulphurous acid, resulting from pyritiferous fuel, was an important agent in these supposed deoxidizing processes, although sulphurous acid can never play the part of a reducing agent in the high heat of a brick-kiln. The sulphuric acid, on the contrary, which might have been contained in the clay, would, under these conditions, through the mere influence of heat, be decomposed into sulphurous gas and free oxygen. On the other hand, it is maintained by some manufacturers that white bricks, which assume a green color when half-fused by high heat, owe this change of color and an increase of absolute weight to an addition of oxygen through the influence of protoxide of iron. In this case, as in the former, the reality of facts has been totally reversed; for, according to our investigations, the white bricks contain only peroxide of iron, and the green glazed ones, on the contrary, a considerable quantity of protoxide; the latter, therefore, most have less absolute weight than when they were in the white state, and only the specific gravity of compact pieces has been increased, as, in consequence of a semi-fusion, most of their pores are closed.
Some time since, we analyzed several bricks with reference to the above questions, and recently have given this subject renewed thought. The main question turns upon the determination of the quantity of iron present, and its state of oxidation; since this metal is not only the cause of the various tints; but even of the very existence of color in bricks. The most particular attention, therefore, had to be paid to the determination of the existence of protoxide of iron. This determination, however, presented some difficulties, since hard-burnt bricks are the most refractory of all complex silicious substances. Not even the color of pulverized bricks is materially changed by treatment with sulphuric acid, in a closed glass tube, according to Alex. Mitcherlich's method, at 350 ° centigrade, for eight to ten hours. By treating with hydrofluoric acid, however, a total decomposition is effected, and the protoxide of iron can then be determined In the diluted solution by hypermanganate of potassa. We have made a number of tests to prove that pure hydrofluoric acid (free from arsenic) does not affect the action of the standard potassic solution. J. cooke (Journal of Practical Chemistry, vol. cii., page 456) has also shown that protoxide of iron in a solution of sulphate of iron may be accurately determined in the presence of hydrofluoric acid by hypermanganate of potassa.
The specimens which were first subjected to analysis were two kinds of bricks from the works of Mr. Oppenheim, near Rüdersdorf, and two others from the works of Dr. Kuhnheim, at Freienwalde
on the Oder. The physical properties of these materials and their total contents of iron were as follows:
Rüdersdorf Bricks.
No. 1. Pale red outside, more highly colored inside; moderately hard; manufactured at cherry heat; contain 3.78 per cent of sesquioxide of iron.
No. 2. Pale yellowish white, reddish inside; glazed, harder and firmer than No. 1; manufactured at a considerably higher temperature, verging on that of white heat; contain 4.26 per cent of sesquioxide of iron.
Freienwalde Bricks.
No. 3. Lively red; moderately hard and firm; manufactured at cherry heat; contains 3.79 per cent of sesquioxide of iron.
No. 4. Darker red; more compact and of greater hardness than No. 3; manufactured at a temperature near white heat; contain 4.28 per cent of sesquioxide of iron.
All these four specimens showed, during analyses, reactions so slight of protoxide of iron that its existence, or trace even, is dubious.
These facts show:
1st. That a relatively small percentage of peroxide of iron is sufficient to impart a lively red color to bricks.
2d. That with a perfectly equal percentage of iron, certain kinds of brick remain red when burned at nearly a white heat, whilst others turn pale without a reduction of their peroxide of iron into protoxide.
The last difference is merely based upon a variation in the percentage of lime contained in the raw material. According to analyses made by Mr. Hey, at the laboratory of the Mining Academy at Berlin, under the supervision of Mr. Finkener, the clay of Steinitz-See, from which the Rüdersdorf brick are made, contains 8.69 per cent, that of Freienwalde only 2.47 per cent of lime, while the quantities of magnesia and alkalies are very minute and equal in boils cases. The oxide of calcium, (lime,) if contained in considerable quantity in the raw material, acts, under the influence of high heat, upon the peroxide of iron, predisposing it to enter the combination of a polybasic white silicate. It can not be supposed that a ferrate of lime is formed while silicic acid is present in such decided excess. Besides, the pure compounds of this kind are reddish-brown. The magnesia, which exists mostly in insignificant quantities, does not seem to play an important part. According to the experience of many manufacturers, pale bricks are produced, especially in those parts of the kiln where smoke has had a chance to collect or to touch the clay. The cause of this is the higher local temperature, resulting from a more intimate contact with combustible particles.
If a brick containing but little lime changes in color from light red to dark red, an alteration only of the physical state of aggregation of the free uncomnined peroxide of iron takes place; and this substance is the only cause of color in all kinds of brick.
My next communication will treat of green and dark-colored clinkers.
16.2.14
Queries. Yellow bronze-powder.
Manufacturer and builder 1, 1869
D. B. of Massachusetts.
- "Please give me the manner of making yellow bronze-powder. I hear it is made of tin: is this so?"
Most text-books on chemistry will tell you that the common yellow bronze-powder used in imitating brass or gilding is a bisulphide of tin. This is true. In order to make it, expose to a low red heat, in a glass flask, twelve parts of block tin, six of mercury, six of sal-ammoniac, and seven of flowers of sulphur. These different substances are then fused by the heat. Of the compounds, sulphide of mercury or vermillion, protochloride of tin, and bisulphide of tin formed, the last is not volatile and remains behind in the flask; the first two are sublimed with some of the sal-ammoniac. This preparation of tin is also called mosaic gold, and, if successfully made, consists of brilliant gold-colored scales.
D. B. of Massachusetts.
- "Please give me the manner of making yellow bronze-powder. I hear it is made of tin: is this so?"
Most text-books on chemistry will tell you that the common yellow bronze-powder used in imitating brass or gilding is a bisulphide of tin. This is true. In order to make it, expose to a low red heat, in a glass flask, twelve parts of block tin, six of mercury, six of sal-ammoniac, and seven of flowers of sulphur. These different substances are then fused by the heat. Of the compounds, sulphide of mercury or vermillion, protochloride of tin, and bisulphide of tin formed, the last is not volatile and remains behind in the flask; the first two are sublimed with some of the sal-ammoniac. This preparation of tin is also called mosaic gold, and, if successfully made, consists of brilliant gold-colored scales.
15.2.14
The Art of Gilding.
Manufacturer and builder 4, 1869
Gold is not improperly called the most precious of metals. Aside from its brilliancy and color, which render it so highly prized, it possesses certain properties that give it a marked superiority over most of the other metals. Among these properties may be mentioned its malleability, ductility, and nonliability to tarnish when exposed to atmospheric action. From the circumstance that gold occurs in the metallic state, and is largely mixed with alluvial deposits, it is probable that it was the first known metal. History informs us that the art of working gold was know - main the time of Moses, and indeed it appears from different passages in the Old Testament that the ancient artificers in metals were not unacquainted with a process of refining gold. Their process, however, cannot have been similar to that now employed. Both the art of gilding with gold-leaf as well as that by means of amalgamation appear to have been known at a very remote period. The art of gilding is frequently mentioned in the Old Testament, as for instance in the first book of Kings, where mention is made of the tabernacle. Indeed, it seems that the art, particularly when practiced with the use of gold-leaf, was carried in these times to a high degree of perfection. This is shown by the fact that among the ruins of some of the apartments of the imperial palace on the Palatine Hill, at Rome, two rooms were discovered, on the walls of which gilded work was found apparently as fresh as if lately done. Both methods mentioned have been almost wholly superseded by electro-gilding. This process can be applied as well for gilding metallic objects as those composed of wood or plaster; in fact, it can be applied to any substance capable of receiving a coating of plumbago. The method of gilding by amalgamation, which consists in applying an amalgam of gold and mercury to the metallic surface to be coated, and then removing the mercury by means of heat, does not lack perfection in a technical point of view. In view, however, of sanitary considerations it presents very grave objections, not only from the fact that it injures the health of the operator, not only in that it brings about trembling, paralysis, and intensified action of the salivary glands and abscesses in the mouth, but also in tempting the workmen to an immoderate use of alcoholic beverages, which is found to lessen the trembling of their hands for a short period of time.
Gold is not improperly called the most precious of metals. Aside from its brilliancy and color, which render it so highly prized, it possesses certain properties that give it a marked superiority over most of the other metals. Among these properties may be mentioned its malleability, ductility, and nonliability to tarnish when exposed to atmospheric action. From the circumstance that gold occurs in the metallic state, and is largely mixed with alluvial deposits, it is probable that it was the first known metal. History informs us that the art of working gold was know - main the time of Moses, and indeed it appears from different passages in the Old Testament that the ancient artificers in metals were not unacquainted with a process of refining gold. Their process, however, cannot have been similar to that now employed. Both the art of gilding with gold-leaf as well as that by means of amalgamation appear to have been known at a very remote period. The art of gilding is frequently mentioned in the Old Testament, as for instance in the first book of Kings, where mention is made of the tabernacle. Indeed, it seems that the art, particularly when practiced with the use of gold-leaf, was carried in these times to a high degree of perfection. This is shown by the fact that among the ruins of some of the apartments of the imperial palace on the Palatine Hill, at Rome, two rooms were discovered, on the walls of which gilded work was found apparently as fresh as if lately done. Both methods mentioned have been almost wholly superseded by electro-gilding. This process can be applied as well for gilding metallic objects as those composed of wood or plaster; in fact, it can be applied to any substance capable of receiving a coating of plumbago. The method of gilding by amalgamation, which consists in applying an amalgam of gold and mercury to the metallic surface to be coated, and then removing the mercury by means of heat, does not lack perfection in a technical point of view. In view, however, of sanitary considerations it presents very grave objections, not only from the fact that it injures the health of the operator, not only in that it brings about trembling, paralysis, and intensified action of the salivary glands and abscesses in the mouth, but also in tempting the workmen to an immoderate use of alcoholic beverages, which is found to lessen the trembling of their hands for a short period of time.
14.2.14
Flint Class.
Manufacturer and builder 4, 1869
The invention of flint glass came about for a very different reason than that which renders it valuable at present. In using coal as fuel in England, it became necessary to protect the glass from the smoke and soot of the flame, which turned the white glass dark. This was accomplished by covered pots; but as in this way the heat was not so easily communicated, and as common glass would not melt with sufficient readiness, it became necessary to make a more easily fusible glass. This was at first tried by using more potash or soda; but such glass would not stand the influence of air and moisture, hence oxide of lead was tried. The result was a glass of low fusing point, great refrangibility, whiteness, and softness.
It is easily melted, blown, ground, and cut; has a brilliant lustre, and is especially adapted for articles of luxury, as chandeliers, goblets, and the like. It is also called crystal; but real crystal, or quartz, is very hard, very difficult of fusion, and has a low degree of refrangibility, so that, in reality, it scarcely resembles crystal at all except in its clearness and whiteness. Pure crystal is simply snide acid, and flint glass is a double silicate of lead and potash.
It is produced by mixing:
Sand, ground quartz, or crystal --- 100 lbs.
Oxide of lead, aluminum --- 45 to 70 "
Purified potash --- 30 to 35 "
Salpetre and potash, each --- 15 "
Broken glass, called cullet --- 10 to 30 "
These materials are finely ground and well mixed before placing them in the pots. The melting takes about two hours, and they have to remain for another two hours in the molten state before they become a homogeneous mass. The fuel is the greatest expense, as every hundredweight of glass takes from five to ten hundredweights of fuel to be properly fused.
When this glass contains a large proportion of lead and about five parts borax, its refrangibility and dispersive power for light are so great that, when cut in small pieces like diamonds, it imitates the real diamond in a quite deceiving manner, when not examined too closely. It shows the same glow of rainbow colors, and it is considerably used, and with good effect, as an imitation of the real diamond, and known among jewelers under the name of strass or paste. Its softness, however, is very objectionable, as by wear it soon loses its polish, consequently all its lustre, and looks like common glass, which it really is. True crystals of quartz are very hard, and when used for ornaments will stand wear well; but, unfortunately, they have not the refrangibility for light, and never show the play of colors of the lead glass, so strikingly evident in the genuine diamond.
In scientific investigation flint glass has made itself invaluable, as it is used to correct some of the optical defects of the common glass lenses in telescopes and microscopes. Such lenses are made of two kinds of glass, crown glass and flint glass, that is, in other words, common glass and lead glass, and are called achromatic lenses, which means that they show no unreal coloring of the objects observed, like other lenses made of only one kind of glass.
The invention of flint glass came about for a very different reason than that which renders it valuable at present. In using coal as fuel in England, it became necessary to protect the glass from the smoke and soot of the flame, which turned the white glass dark. This was accomplished by covered pots; but as in this way the heat was not so easily communicated, and as common glass would not melt with sufficient readiness, it became necessary to make a more easily fusible glass. This was at first tried by using more potash or soda; but such glass would not stand the influence of air and moisture, hence oxide of lead was tried. The result was a glass of low fusing point, great refrangibility, whiteness, and softness.
It is easily melted, blown, ground, and cut; has a brilliant lustre, and is especially adapted for articles of luxury, as chandeliers, goblets, and the like. It is also called crystal; but real crystal, or quartz, is very hard, very difficult of fusion, and has a low degree of refrangibility, so that, in reality, it scarcely resembles crystal at all except in its clearness and whiteness. Pure crystal is simply snide acid, and flint glass is a double silicate of lead and potash.
It is produced by mixing:
Sand, ground quartz, or crystal --- 100 lbs.
Oxide of lead, aluminum --- 45 to 70 "
Purified potash --- 30 to 35 "
Salpetre and potash, each --- 15 "
Broken glass, called cullet --- 10 to 30 "
These materials are finely ground and well mixed before placing them in the pots. The melting takes about two hours, and they have to remain for another two hours in the molten state before they become a homogeneous mass. The fuel is the greatest expense, as every hundredweight of glass takes from five to ten hundredweights of fuel to be properly fused.
When this glass contains a large proportion of lead and about five parts borax, its refrangibility and dispersive power for light are so great that, when cut in small pieces like diamonds, it imitates the real diamond in a quite deceiving manner, when not examined too closely. It shows the same glow of rainbow colors, and it is considerably used, and with good effect, as an imitation of the real diamond, and known among jewelers under the name of strass or paste. Its softness, however, is very objectionable, as by wear it soon loses its polish, consequently all its lustre, and looks like common glass, which it really is. True crystals of quartz are very hard, and when used for ornaments will stand wear well; but, unfortunately, they have not the refrangibility for light, and never show the play of colors of the lead glass, so strikingly evident in the genuine diamond.
In scientific investigation flint glass has made itself invaluable, as it is used to correct some of the optical defects of the common glass lenses in telescopes and microscopes. Such lenses are made of two kinds of glass, crown glass and flint glass, that is, in other words, common glass and lead glass, and are called achromatic lenses, which means that they show no unreal coloring of the objects observed, like other lenses made of only one kind of glass.
13.2.14
Seaweed Charcoal.
Manufacturer and builder 5, 1869
This material, which is prepared from the fine tangle of the Hebrides, is being extensively used in England as a substitute for animal charcoal, as a filtering medium for water, for deodorizing sewage, cleaning white gflass, removing acidity from, and decolorizing wines, and precipitating and decolorizing vegetable alkaloids.
- London Chemical News.
This material, which is prepared from the fine tangle of the Hebrides, is being extensively used in England as a substitute for animal charcoal, as a filtering medium for water, for deodorizing sewage, cleaning white gflass, removing acidity from, and decolorizing wines, and precipitating and decolorizing vegetable alkaloids.
- London Chemical News.
12.2.14
New Chrome Yellows.
Manufacturer and builder 12, 1869
The compounds of chromium with lead leave been successively treated in former numbers, (pages 11, 52, 80, 139, and 334,) in which are described all the varieties from yellow orange to red. There are, how-ever, some other compounds of chromium with zinc and baryta which give peculiar shades of color, and, thus far, seem to be but little known. They will undoubtedly come into use as soon as they are known and appreciated.
Chrome Baryta, or Barium Yellow.
- This is a very beautiful pale sulphur yellow paint. It is made from a solution of chloride of barium, which is first made slightly alkaline with caustic soda, till it is at the point of giving a precipitate. Then a solution of neutral yellow chromate of potash is added as long as a precipitate is formed. This precipitate is then carefully washed and dried. It has the advantage over lead yellows that it is not acted upon by sulphurous vapors, which will blacken lead compounds.
Zinc Yellow or Chrome Zinc is another very important color. It possesses a peculiar pale tone, not found in the chrome compounds of lead, and has recently been introduced as a paint. It is best made from a solution of sulphate of zinc, which may be obtained very pure, and is very cheap, being a waste product of all ordinary galvanic batteries in telegraph offices, electroplating establishments, etc. The zinc yellow is a basic compound of oxide of zinc and chromic acid; the neutral and the acid compound is soluble in water, and thus can give no precipitate. For this reason a solution of red bichromate of potash gives no precipitate in a solution of sulphate of zinc; while by the combination of constituents only a soluble bichromate of zinc can be formed. Neutral chromate of potash, or bichromate mixed with sufficient caustic soda, gives a beautiful yellow precipitate; but at the same time a red solution is formed, containing the soluble bichromate of zinc; and by further addition of chromate of potash no further precipitate is formed, as the zinc is retained in tlee solution, so that, in this way, neither all the zinc nor all the chromate can be utilized. If, however, before the precipitation, the neutral chromate of potash is mixed with so much caustic lye that the amount of alkali is double that of the neutral salt, then a yellow precipitate will be formed with the solution of sulphate of zinc, and all the zinc may be precipitated. On these facts the following method is founded.
A quantity of sulphate of zinc is dissolved in water, and, if necessary, purified by settling and decantation. A smaller quantity of chromate or bichromate of potash is also dissolved. About ten test-tubes are now each half filled with the zinc solution and placed in line. To the chromate solution caustic alkali is added, till a drop of it produces a precipitate in the first test-tube; and at the same time it is observed if a further addition of the mixture to this test-tube produces a red color, which would indicate the formation of red bichromate of zinc; if this be the case, a further portion of caustic solution is added to the chromate of potash, and the mixture tried in the second test-tube. If now again a red solution appears as the same time with the yellow precipitate, a new portion of caustic lye is added, and this is repeated til lthe yellow precipitate is formed, without a simultaneuous red coloring of the supernatant liquid, which must appear either colorless or light yellow, like a solution of neutral chromate of potash. As soon as this occurs, the contents of the test-tubes are poured into the original sulphate of zinc solution, and then the mixture of chromate of potash and caustic lye is added, as long as a precipitate takes place. The precipitate is afterward washed and dried, and form a pale yellow, in color between Naples yellow and the palest yellow chrome lead.
The compounds of chromium with lead leave been successively treated in former numbers, (pages 11, 52, 80, 139, and 334,) in which are described all the varieties from yellow orange to red. There are, how-ever, some other compounds of chromium with zinc and baryta which give peculiar shades of color, and, thus far, seem to be but little known. They will undoubtedly come into use as soon as they are known and appreciated.
Chrome Baryta, or Barium Yellow.
- This is a very beautiful pale sulphur yellow paint. It is made from a solution of chloride of barium, which is first made slightly alkaline with caustic soda, till it is at the point of giving a precipitate. Then a solution of neutral yellow chromate of potash is added as long as a precipitate is formed. This precipitate is then carefully washed and dried. It has the advantage over lead yellows that it is not acted upon by sulphurous vapors, which will blacken lead compounds.
Zinc Yellow or Chrome Zinc is another very important color. It possesses a peculiar pale tone, not found in the chrome compounds of lead, and has recently been introduced as a paint. It is best made from a solution of sulphate of zinc, which may be obtained very pure, and is very cheap, being a waste product of all ordinary galvanic batteries in telegraph offices, electroplating establishments, etc. The zinc yellow is a basic compound of oxide of zinc and chromic acid; the neutral and the acid compound is soluble in water, and thus can give no precipitate. For this reason a solution of red bichromate of potash gives no precipitate in a solution of sulphate of zinc; while by the combination of constituents only a soluble bichromate of zinc can be formed. Neutral chromate of potash, or bichromate mixed with sufficient caustic soda, gives a beautiful yellow precipitate; but at the same time a red solution is formed, containing the soluble bichromate of zinc; and by further addition of chromate of potash no further precipitate is formed, as the zinc is retained in tlee solution, so that, in this way, neither all the zinc nor all the chromate can be utilized. If, however, before the precipitation, the neutral chromate of potash is mixed with so much caustic lye that the amount of alkali is double that of the neutral salt, then a yellow precipitate will be formed with the solution of sulphate of zinc, and all the zinc may be precipitated. On these facts the following method is founded.
A quantity of sulphate of zinc is dissolved in water, and, if necessary, purified by settling and decantation. A smaller quantity of chromate or bichromate of potash is also dissolved. About ten test-tubes are now each half filled with the zinc solution and placed in line. To the chromate solution caustic alkali is added, till a drop of it produces a precipitate in the first test-tube; and at the same time it is observed if a further addition of the mixture to this test-tube produces a red color, which would indicate the formation of red bichromate of zinc; if this be the case, a further portion of caustic solution is added to the chromate of potash, and the mixture tried in the second test-tube. If now again a red solution appears as the same time with the yellow precipitate, a new portion of caustic lye is added, and this is repeated til lthe yellow precipitate is formed, without a simultaneuous red coloring of the supernatant liquid, which must appear either colorless or light yellow, like a solution of neutral chromate of potash. As soon as this occurs, the contents of the test-tubes are poured into the original sulphate of zinc solution, and then the mixture of chromate of potash and caustic lye is added, as long as a precipitate takes place. The precipitate is afterward washed and dried, and form a pale yellow, in color between Naples yellow and the palest yellow chrome lead.
11.2.14
American Vermilion or Chrome Red.
Manufacturer and builder 11, 1869
From what has been explained (page 80) concerning chrome orange, it might be expected that chrome red would be a very basic chromate of lead. It may be obtained of various shades from a beautiful deep orange to a perfect vermilion red, with which, when it is properly prepared, it may almost compete in glow and depth of color. In this case it is sometimes called American vermilion. Unfortunately, however, the very deep varieties of this red color depend more on the peculiar molecular condition of the particles than on its chemical composition. The color is darker in proportion as the crystals of which the powder is composed are larger; and when paints of different shades of dark red are, by rubbing or grinding divided into smaller particles, the color becomes orange red. This is one simple test to distinguish this red from genuine vermilion, which does not change at all by this treatment. An adulteration of the last with chrome red is not to be feared, as it is impracticable. The sulphur in the vermilion forms with the lead in the chrome red a blackish compound which ruins the color, as all sulphur vapors in general spoil chrome red, as well as the chrome yellow made with lead, and in general all lead colors. Adulteration of chrome red itself has been found impossible, as by it the color in any case becomes inferior to the cheaper red lead. If the dark chrome red or American vermilion is to retain its beautiful deep red color, it must not be rubbed up with the oil or gum water, but simply mixed; the same is the case with certain greens, as Schweinfurth green, which, like Paris green, is an arsenite of copper.
There are four methods of preparing chrome red which we will separately explain, as each method pro-duces a peculiar product differing in shade from the others.
First way of making chrome red.
- If a soluble basic or neutral lead salt, or chloride of lead, or the oxychloride of lead, is mixed with a solution of yellow or red chromate of potash until the chromate of potash is in slight excess, there will be formed a chromate of lead which will be yellow or orange, according as the lead salt was neutral or basic and the chrome solution red or yellow. The light precipitate after being well washed is exposed to the action of a concentrated caustic solution; in this it will gradually become more red and contract to a heavy powder, and the snore so as it is treated in this way for a longer period.
As soon as this precipitate shows no further change, even by the addition of more caustic solution, the supernatant yellow fluid is removed and saved, as it contains chromate of potash, and therefore may be used for making a subsequent solution of this salt. The red precipitate is washed repeatedly, filtered and dried, by which treatment a mass is obtained which of itself falls into powder.
This red is usually slightly dark in color; if, how-ever, the solution and materials used were very pure, it will possess a brightness surpassing that of all the other chrome reds obtained by other methods.
It can, however, be made darker in a muffle-furnace; in this it is heated to a dark cherry red. It will become much darker, and nearly of the color of that made by means of, nitre, as described below. By repeatedly taking samples during this operation, the point at which the color does not intensify any further is easily observed. As soon as this is the case, it is withdrawn.
Second way of making chrome red.
- Woehler and Liebig have taught the art of making the darkest shades of red by heating chrome yellow with nitre. In place of treating the chrome yellow with an alkali, it is simply washed and dried. Nitrate of potassa is melted in a crucible heated to a low red heat and the dry powdered chrome yellow gradually added till little is left of the nitre, which is decomposed with effervescence. The temperature must not be too high. The crucible is then removed and placed aside, when the chrome red falls to the bottom of the mass of melted hot nitre. The remnant of this nitre is poured off, and after the crucible has been cooled, it is placed under a small stream of water, which is collected in another vessel. This stream of water is necessary, as if the solution stands long in the crucible the chrome red will be colored brown. At last the chrome red will become loose and freed from the adhering salt, when it must be well washed in a large vessel with water. The yellow fluid and the salt poured from the crucible contain much chromate of potash, and are therefore adapted to precipitate chrome yellow or orange from lead solution, to be treated as above if required to change them into chrome red.
The red thus obtained is very crystalline, and almost a perfect vermilion red. This is the method by which the most beautiful and desirable chrome reds are obtained.
Third way to make chrome red.
- Take a hot solution of nine parts neutral chromate of potash, to which is added some caustic potassa; or take three parts bichro-mate of potash, to which six parts of crystals of carbonate of soda dissolved in a sufficient amount of water are added, and mix either of these solutions with eight parts pure white lead finely ground in water, or even chloride, or oxythloride of lead. The lead salt will be slowly transformed into a fine chrome red, which in color is between the two kinds that we have just described, and also has a crystalline appearance. In accordance wtth the kind of white lead or chloride of lead, the liquid is able to transform more or less white into red; however, it is essential to have an excess of the caustic liquid, in order to prevent any unchanged white from becoming mixed with the red. This caustic liquid may, however, be utilized by pouring it over fresh white lead, preparatory to its treatment as above; or it may be used as if it were a simple solution of soda, and chromate of potash added, to snake the first solution mentioned. Time precipitate is, of course, washed and dried as above.
Fourth way of making chrome red.
- A very cheap and fine red, which however is inferior to the above, may be obtained by grinding pure litharge in water in a paint-mill to the highest degree of fineness, and boiling it with the gradual addition of chromate or bichromate of potash. Either of the last two substances must be added only so long as the color of the litharge gains in intensity. In using the simple chromate of potash, a slight excess does not matter much; but when using the bichromate, the least excess snakes the color at once orange, which, however, may then be corrected by adding a sufficient amount of litharge. All these particulars in the shades of color obtained are in perfect accordance with what was before ex-plained, in the article on the production of different shades of chrome yellow - page 52 of this volume.
From what has been explained (page 80) concerning chrome orange, it might be expected that chrome red would be a very basic chromate of lead. It may be obtained of various shades from a beautiful deep orange to a perfect vermilion red, with which, when it is properly prepared, it may almost compete in glow and depth of color. In this case it is sometimes called American vermilion. Unfortunately, however, the very deep varieties of this red color depend more on the peculiar molecular condition of the particles than on its chemical composition. The color is darker in proportion as the crystals of which the powder is composed are larger; and when paints of different shades of dark red are, by rubbing or grinding divided into smaller particles, the color becomes orange red. This is one simple test to distinguish this red from genuine vermilion, which does not change at all by this treatment. An adulteration of the last with chrome red is not to be feared, as it is impracticable. The sulphur in the vermilion forms with the lead in the chrome red a blackish compound which ruins the color, as all sulphur vapors in general spoil chrome red, as well as the chrome yellow made with lead, and in general all lead colors. Adulteration of chrome red itself has been found impossible, as by it the color in any case becomes inferior to the cheaper red lead. If the dark chrome red or American vermilion is to retain its beautiful deep red color, it must not be rubbed up with the oil or gum water, but simply mixed; the same is the case with certain greens, as Schweinfurth green, which, like Paris green, is an arsenite of copper.
There are four methods of preparing chrome red which we will separately explain, as each method pro-duces a peculiar product differing in shade from the others.
First way of making chrome red.
- If a soluble basic or neutral lead salt, or chloride of lead, or the oxychloride of lead, is mixed with a solution of yellow or red chromate of potash until the chromate of potash is in slight excess, there will be formed a chromate of lead which will be yellow or orange, according as the lead salt was neutral or basic and the chrome solution red or yellow. The light precipitate after being well washed is exposed to the action of a concentrated caustic solution; in this it will gradually become more red and contract to a heavy powder, and the snore so as it is treated in this way for a longer period.
As soon as this precipitate shows no further change, even by the addition of more caustic solution, the supernatant yellow fluid is removed and saved, as it contains chromate of potash, and therefore may be used for making a subsequent solution of this salt. The red precipitate is washed repeatedly, filtered and dried, by which treatment a mass is obtained which of itself falls into powder.
This red is usually slightly dark in color; if, how-ever, the solution and materials used were very pure, it will possess a brightness surpassing that of all the other chrome reds obtained by other methods.
It can, however, be made darker in a muffle-furnace; in this it is heated to a dark cherry red. It will become much darker, and nearly of the color of that made by means of, nitre, as described below. By repeatedly taking samples during this operation, the point at which the color does not intensify any further is easily observed. As soon as this is the case, it is withdrawn.
Second way of making chrome red.
- Woehler and Liebig have taught the art of making the darkest shades of red by heating chrome yellow with nitre. In place of treating the chrome yellow with an alkali, it is simply washed and dried. Nitrate of potassa is melted in a crucible heated to a low red heat and the dry powdered chrome yellow gradually added till little is left of the nitre, which is decomposed with effervescence. The temperature must not be too high. The crucible is then removed and placed aside, when the chrome red falls to the bottom of the mass of melted hot nitre. The remnant of this nitre is poured off, and after the crucible has been cooled, it is placed under a small stream of water, which is collected in another vessel. This stream of water is necessary, as if the solution stands long in the crucible the chrome red will be colored brown. At last the chrome red will become loose and freed from the adhering salt, when it must be well washed in a large vessel with water. The yellow fluid and the salt poured from the crucible contain much chromate of potash, and are therefore adapted to precipitate chrome yellow or orange from lead solution, to be treated as above if required to change them into chrome red.
The red thus obtained is very crystalline, and almost a perfect vermilion red. This is the method by which the most beautiful and desirable chrome reds are obtained.
Third way to make chrome red.
- Take a hot solution of nine parts neutral chromate of potash, to which is added some caustic potassa; or take three parts bichro-mate of potash, to which six parts of crystals of carbonate of soda dissolved in a sufficient amount of water are added, and mix either of these solutions with eight parts pure white lead finely ground in water, or even chloride, or oxythloride of lead. The lead salt will be slowly transformed into a fine chrome red, which in color is between the two kinds that we have just described, and also has a crystalline appearance. In accordance wtth the kind of white lead or chloride of lead, the liquid is able to transform more or less white into red; however, it is essential to have an excess of the caustic liquid, in order to prevent any unchanged white from becoming mixed with the red. This caustic liquid may, however, be utilized by pouring it over fresh white lead, preparatory to its treatment as above; or it may be used as if it were a simple solution of soda, and chromate of potash added, to snake the first solution mentioned. Time precipitate is, of course, washed and dried as above.
Fourth way of making chrome red.
- A very cheap and fine red, which however is inferior to the above, may be obtained by grinding pure litharge in water in a paint-mill to the highest degree of fineness, and boiling it with the gradual addition of chromate or bichromate of potash. Either of the last two substances must be added only so long as the color of the litharge gains in intensity. In using the simple chromate of potash, a slight excess does not matter much; but when using the bichromate, the least excess snakes the color at once orange, which, however, may then be corrected by adding a sufficient amount of litharge. All these particulars in the shades of color obtained are in perfect accordance with what was before ex-plained, in the article on the production of different shades of chrome yellow - page 52 of this volume.
10.2.14
Fancy Coloring of Metals.
Manufacturer and builder 11, 1869
The coloring matter of small objects in metal has recently occupied the attention of manufacturers and chemists, and M. Puscher, a German chemist, gives the following recipes for the application of sulphur to the purposes referred to:
1. A solution is made in the following manner: Dissolve four ounces of the hypo-sulphite of soda in a pint and a half of water, and then add a solution of one ounce of acetate of lead in the same quantity of water. Articles to be colored are placed in the mixture, which is then gradually heated to boiling point. The effect of this solution is to give iron the effect of blue steel; zinc becomes bronze; and copper or brass becomes, successively, yellowish, red, scarlet, deep blue, light blue, bluish white, and, finally, white, with a tinge of rose. This solution has no effect on lead or tin.
2. By replacing the acetate of lead in the solution by sulphate of copper, brass becomes first of a fine rosy tint, then green, and, finally, of an iridescent brown color. Zinc does not color in this solution; it throws down a precipitate of brown sulphuret of copper, but if boiled in a solution containing both lead and copper, it becomes covered with a black adherent crust, which may be improved by a thin coating of wax.
3. If the lead solution be thickened with a little gum tragacanth, and patterns be traced with it on brass, which is after-wards heated to 212 degrees, and then plunged in solution No. 1, a good marked effect is produced.
The coloring matter of small objects in metal has recently occupied the attention of manufacturers and chemists, and M. Puscher, a German chemist, gives the following recipes for the application of sulphur to the purposes referred to:
1. A solution is made in the following manner: Dissolve four ounces of the hypo-sulphite of soda in a pint and a half of water, and then add a solution of one ounce of acetate of lead in the same quantity of water. Articles to be colored are placed in the mixture, which is then gradually heated to boiling point. The effect of this solution is to give iron the effect of blue steel; zinc becomes bronze; and copper or brass becomes, successively, yellowish, red, scarlet, deep blue, light blue, bluish white, and, finally, white, with a tinge of rose. This solution has no effect on lead or tin.
2. By replacing the acetate of lead in the solution by sulphate of copper, brass becomes first of a fine rosy tint, then green, and, finally, of an iridescent brown color. Zinc does not color in this solution; it throws down a precipitate of brown sulphuret of copper, but if boiled in a solution containing both lead and copper, it becomes covered with a black adherent crust, which may be improved by a thin coating of wax.
3. If the lead solution be thickened with a little gum tragacanth, and patterns be traced with it on brass, which is after-wards heated to 212 degrees, and then plunged in solution No. 1, a good marked effect is produced.
9.2.14
Water-Colors.
Manufacturer and builder 10, 1869
Water-Colors are finely divided pigments that have been mixed with a suitable binding material, so as to form a stiff dough that may be pressed into tablets. The pigments employed are either simply ground, or ground and washed. The binding material generally employed is either glue-water, or a mixture of this with a solution of gum arable or gum tragacanth. The requisite properties of a suitable material of this kind are that it should allow the tablets to be well pressed and prevent their cracking after drying. The grinding of the pigment and the mixing with the binding material are often accomplished at one operation, various machines being, employed for this purpose. Pigments of a crystalline nature, such as Paris and English greens, require a longer time for grinding that others. For ordinary water-colors, cheap and earthy pigments are selected, and less attention is bestowed upon their thorough reduction. However, it would be well if the poisonous colors should be rejected as much as possible, especially in those articles that are intended for children, who are apt to apply them to their mouths and expose themselves to the danger of being poisoned. There are no exterior signs whereby the quality of water-colors may be determined. Neither the silver and gold-colored characters, nor the dull appearance, nor a certain lustre, which is frequently imparted by a coat of colophony in alcohol, are any indications of superiority. This depends upon the quality of the pigment itself, as well as its state of division and the character of the cohesfre body employed. The draughtsman for whom these colors are mostly manufactured seldom requires more titan six colors, though the boxes generally contain more. Indeed, some authors assert that the three primary colors - red, blue, and yellow - are amply sufficient. In general, however, it will be found impossible to produce the required variety of tints by the use of only three colors.
Water-Colors are finely divided pigments that have been mixed with a suitable binding material, so as to form a stiff dough that may be pressed into tablets. The pigments employed are either simply ground, or ground and washed. The binding material generally employed is either glue-water, or a mixture of this with a solution of gum arable or gum tragacanth. The requisite properties of a suitable material of this kind are that it should allow the tablets to be well pressed and prevent their cracking after drying. The grinding of the pigment and the mixing with the binding material are often accomplished at one operation, various machines being, employed for this purpose. Pigments of a crystalline nature, such as Paris and English greens, require a longer time for grinding that others. For ordinary water-colors, cheap and earthy pigments are selected, and less attention is bestowed upon their thorough reduction. However, it would be well if the poisonous colors should be rejected as much as possible, especially in those articles that are intended for children, who are apt to apply them to their mouths and expose themselves to the danger of being poisoned. There are no exterior signs whereby the quality of water-colors may be determined. Neither the silver and gold-colored characters, nor the dull appearance, nor a certain lustre, which is frequently imparted by a coat of colophony in alcohol, are any indications of superiority. This depends upon the quality of the pigment itself, as well as its state of division and the character of the cohesfre body employed. The draughtsman for whom these colors are mostly manufactured seldom requires more titan six colors, though the boxes generally contain more. Indeed, some authors assert that the three primary colors - red, blue, and yellow - are amply sufficient. In general, however, it will be found impossible to produce the required variety of tints by the use of only three colors.
8.2.14
Walkoisia rottia
Uusi Suometar 140, 19.6.1888
Walkoisia rottia on ruwennut näkymään Uudellakirkolla Kirkkojärwenkylässä. Ne owat lumiwalkeita. Suuruudeltansa eiwät ole niin isoja kuin tawallinen rotta. Silmät owat niillä punaset, - kertoo W. S.
Walkoisia rottia on ruwennut näkymään Uudellakirkolla Kirkkojärwenkylässä. Ne owat lumiwalkeita. Suuruudeltansa eiwät ole niin isoja kuin tawallinen rotta. Silmät owat niillä punaset, - kertoo W. S.
7.2.14
Hämmästyttäviä lausuntoja viranomaisilta.
Yhteishyvä 19, 12.5.1911
Tämän vuoden alussa pyysi Halla Osuuskauppa r. I. Viipurin läänin kuvernööriltä lupaa, saada myydä sellaisia vähemmän myrkyllisiä väri- ja maaliaineita, jotka Keis. Asetuksessa helmik. 14 p:ltä 1888 luetellaan.
Pyynnön johdosta vaati kuvernööri Kymin kunnallislautakunnan ja Kymin ja Pyhtään piirin nimismiehen lausuntoa. Ja näiden molempain mielipide oli se, että pyydettyä lupaa ei pitäisi myöntää. Kuvernööri luonnollisestikin epäsi pyynnön.
Mutta kun puheenaolevat aineet mainitun asetuksen mukaan ovat niin yleisiä kulutustavaroita, että emme käsitä, miten mainitut viranomaiset ovat voineet antaa pyyntööm epäävän lausunnon. Näitä aineita ovat: etikkahappo, väkevöity karvasmandeli, keinotekoinen, tavallinen lipeäkivi, natroni syöpä, sinuuperi punanen, jota käyttävät maalarit ja joka on rikin ja elohopean yhdistelmä, sinkkivalkonen, sinikivi ja rikkihappoinen kuparioksiidi.
Kun pyyntöön oli saatu epäävä päätös, tiedusteltiin mainitun osuuskaupan puolesta telefoonitse molemmilta viranomaisilta syytä, mikä oli aiheuttanut epäävän lausunnon, sekä oliko mahdollisesti puollettu muiden hakijoiden samanlaista anomusta, ja saatiin se hämmästyttävä vastaus, ettei kukaan ole pyytänytkään sellaista lupaa. Ja kumminkin, sen myönsivät molemmat viranomaiset tietävänsä, on näitä aineita yleisesti myytävänä joka kaupassa, siitä vain tuntuivat olevan ymmällä, kuuluvatko edelläluetellut aineet mainitussa asetuksessa mainittuihin aineihin.
Jos mainitut viranomaiset eivät tahdo myötävaikuttaa siihen, että mainittua asetusta vastaan rikotaan, on heidän velvollisuutensa ottaa selvää, mitä anomuksia he puoltavat tai vastustavat, eivätkä kuten nyt puheenaolevassa tapauksessa, niin ainakin uskomme, anna lausuntoa tietämättä, mistä oikeastaan on kysymyskään.
K. F. J—a.
Tämän vuoden alussa pyysi Halla Osuuskauppa r. I. Viipurin läänin kuvernööriltä lupaa, saada myydä sellaisia vähemmän myrkyllisiä väri- ja maaliaineita, jotka Keis. Asetuksessa helmik. 14 p:ltä 1888 luetellaan.
Pyynnön johdosta vaati kuvernööri Kymin kunnallislautakunnan ja Kymin ja Pyhtään piirin nimismiehen lausuntoa. Ja näiden molempain mielipide oli se, että pyydettyä lupaa ei pitäisi myöntää. Kuvernööri luonnollisestikin epäsi pyynnön.
Mutta kun puheenaolevat aineet mainitun asetuksen mukaan ovat niin yleisiä kulutustavaroita, että emme käsitä, miten mainitut viranomaiset ovat voineet antaa pyyntööm epäävän lausunnon. Näitä aineita ovat: etikkahappo, väkevöity karvasmandeli, keinotekoinen, tavallinen lipeäkivi, natroni syöpä, sinuuperi punanen, jota käyttävät maalarit ja joka on rikin ja elohopean yhdistelmä, sinkkivalkonen, sinikivi ja rikkihappoinen kuparioksiidi.
Kun pyyntöön oli saatu epäävä päätös, tiedusteltiin mainitun osuuskaupan puolesta telefoonitse molemmilta viranomaisilta syytä, mikä oli aiheuttanut epäävän lausunnon, sekä oliko mahdollisesti puollettu muiden hakijoiden samanlaista anomusta, ja saatiin se hämmästyttävä vastaus, ettei kukaan ole pyytänytkään sellaista lupaa. Ja kumminkin, sen myönsivät molemmat viranomaiset tietävänsä, on näitä aineita yleisesti myytävänä joka kaupassa, siitä vain tuntuivat olevan ymmällä, kuuluvatko edelläluetellut aineet mainitussa asetuksessa mainittuihin aineihin.
Jos mainitut viranomaiset eivät tahdo myötävaikuttaa siihen, että mainittua asetusta vastaan rikotaan, on heidän velvollisuutensa ottaa selvää, mitä anomuksia he puoltavat tai vastustavat, eivätkä kuten nyt puheenaolevassa tapauksessa, niin ainakin uskomme, anna lausuntoa tietämättä, mistä oikeastaan on kysymyskään.
K. F. J—a.
6.2.14
Waasan puuwillatehdasosakeyhtiö.
Vaasa 25, 1.3.1904
Käytettyjä työpäiwiä puuwillatehtaassa w.1903 oli 264,687 ja palkkoina näistä jaettiin 597,837 mk 12 p. Työwäki, mestarit ja konttorihenkilökunta yhteenlaskettuna tekiwät kaikkiaan 1,094 henkeä, joista 332 miestä ja 762 naista. Näistä oli alle 15 w. 9, 108 15 ja 18 w. wälillä sekä 977 yli 18 w. 6 Häyry, konetta yht. 1,190 hewoswoim. ja 9 höyrypannua, joista 3 on 80 ja 6 160 naulan painetta warten, sekä 1 Calwet'n säästäjä, lämmittäjä, 6 hewoswoimainen petroleumimoottori ja 3 6, 3 ja 1½ hew.-woiman sähkö moottoria. Laitoksessa käytettiin 670,339 kg. puuwillaa, arwoltaan 937,659 mk 30 p., 11,253 kg. puuwillalankaa, arw. 64,885 mk 48 p., kemikaalioita ja wäriaineita 110,886 mk 48 p. edestä, 4,124 ton. kiwihiiliä, arwoltaan 92,912 mk 59 p., 2,842 m3 puita. arw. 8,224 mk 7 p. ja 4,727 m3 polttoturwetta, arw. 17,321 mk 85 p. Wuoden kuluessa walmistettiin 597,163 kg. lankaa, arw. 2,338,118 mk., 377,020 kg kankaita, arw. 2,575,458 mk, 32,457 kg puuwillaa. arw. 30,855 mk, 1,738 kg werkkoja, arw. 28,644 mk ja 4,925 krossia konelankaa, arw. 82,942 mk. Wärjäyslaitoksessa jalostettiin 55,603 kimppua lankaa, 85,622 kpl kangasta sekä 9,765 kg puuwillaa, joiden yhteenlaskettu armo on 328,070 mk. Koko walmistuksen arwo tekee kaikkiaan 5,284,088 mk. Wuoden kuluessa on tapahtunut 2 tapaturmaa, joista toinen waikeampaa laatua. Sairaskassan warat wuoden kuluessa tekiwät 47,333 mk 92 p. ja apu- ja eläkerahastoissa oli 55.174 mk 52 p. Kaikki työmiehet owat tapaturmawakuutetut.
- Wbl.
Käytettyjä työpäiwiä puuwillatehtaassa w.1903 oli 264,687 ja palkkoina näistä jaettiin 597,837 mk 12 p. Työwäki, mestarit ja konttorihenkilökunta yhteenlaskettuna tekiwät kaikkiaan 1,094 henkeä, joista 332 miestä ja 762 naista. Näistä oli alle 15 w. 9, 108 15 ja 18 w. wälillä sekä 977 yli 18 w. 6 Häyry, konetta yht. 1,190 hewoswoim. ja 9 höyrypannua, joista 3 on 80 ja 6 160 naulan painetta warten, sekä 1 Calwet'n säästäjä, lämmittäjä, 6 hewoswoimainen petroleumimoottori ja 3 6, 3 ja 1½ hew.-woiman sähkö moottoria. Laitoksessa käytettiin 670,339 kg. puuwillaa, arwoltaan 937,659 mk 30 p., 11,253 kg. puuwillalankaa, arw. 64,885 mk 48 p., kemikaalioita ja wäriaineita 110,886 mk 48 p. edestä, 4,124 ton. kiwihiiliä, arwoltaan 92,912 mk 59 p., 2,842 m3 puita. arw. 8,224 mk 7 p. ja 4,727 m3 polttoturwetta, arw. 17,321 mk 85 p. Wuoden kuluessa walmistettiin 597,163 kg. lankaa, arw. 2,338,118 mk., 377,020 kg kankaita, arw. 2,575,458 mk, 32,457 kg puuwillaa. arw. 30,855 mk, 1,738 kg werkkoja, arw. 28,644 mk ja 4,925 krossia konelankaa, arw. 82,942 mk. Wärjäyslaitoksessa jalostettiin 55,603 kimppua lankaa, 85,622 kpl kangasta sekä 9,765 kg puuwillaa, joiden yhteenlaskettu armo on 328,070 mk. Koko walmistuksen arwo tekee kaikkiaan 5,284,088 mk. Wuoden kuluessa on tapahtunut 2 tapaturmaa, joista toinen waikeampaa laatua. Sairaskassan warat wuoden kuluessa tekiwät 47,333 mk 92 p. ja apu- ja eläkerahastoissa oli 55.174 mk 52 p. Kaikki työmiehet owat tapaturmawakuutetut.
- Wbl.
5.2.14
A. V. Forsman: Tutkimuksia Suomen kansan persoonallisen nimistön alalla. I (Väriä koskevia osia)
Suomi 10 / 1894
s.31
*) Archiv f. wiss. Kunde Russlands, X. B. 2 H. Berlin 1851. ("Denkmäler des Alterthums d. Mordwinen"). - Maisteri H.Paasonen on minun pyynnöstäni hyväntahtoisesti ottanut tarkemmin selittääksensä
ylläolevia nimiä:
Kiej, kääntää artikelin tekijä "färberröthe". Moksan murteessa löytyy sana k'äj, erzjan k'ej (Tambovin läänin erzjalaisilla tietääkseni muodossa k'ij), joka merkitsee punasta väriainetta, jota saadaan erään kasvin (ven. марёиа) juurista. Puheena oleva nimenmuoto näyttää olevan tästä substantivista tavallisella johtopäätteellä tehty adjektivi, merkitykseltään = k'ij-väristä rikas (muoto
erzjalainen). [---]
[---]
Lueteltakoon tässä Mainowin mainitsemani lisäksi joitakuita tietoomme tulleita mordvalaisnimiä,joista jotkut ainakin selvästi ilmaisevat tilapäisen aiheensa: Kiej punapaine; Kartscha rikat (syntynyt lakaisemattomassa pirtissä); Scherju isotukkainen; Vidjai kylväjä (synt. kylvön aikana); Veschnjak anoja (synt. jonkun tullessa anomaan); Kschnäka aivastaja (synt. jonkun aivastaessa), Vasin esikoinen; Ura naskali; Kosäj rikas; Masakaj kaunis; Toraj verbiä torama kaakottaa (synt. hanhen kaakottaessa); Likschu tattari (synt. tattarinkylvön aikana).*
[---]
s.180
[---]
i (< ia-)-pääte.
*) Ahlqvist, Suomenkielen rakennus 23 §, huomauttaa että
eläinten, varsinkin koirain nimiä johdetaan tällä päätteellä, niinkuin Musti, Halli, Harmi vert. musta, halla, harmaa. - Huomattava on kuitenkin että niitäkin on pitempimuotoisia. esim. Hal. 18: 498 Harmio.Usein tämmöiset nimet esiintyvät lyhyemmästi i-päätteisinä, esim. Halli, Koivi, Tauli, Tähti, Pauni. *) Samoin sukunimissäkin tapaa usein kaksi rinnakkaismuotoa,toinen ia-, io-, toisen i-päätteisen, varsinkin silloin kun nimi vielä jatkuu nen-päätteiseksi sekä myöskin la-päätteisissä paikkainnimissä. Niin ovat esim. Polvinen = Parviainen, Päivinen = Päiviöinen, Päivilä = Päiviölä, Pärssinen = Pärssiäinen, Kaukinen = Kaukiainen j. n. e.
[---]
s.246
[---]
Niinikään mieluisa, jos sattui olemaan heidän kuopuksensa, iltapuolella ikäänsä heille syntynyt: *Kuopio lienee hänelle silloin nimeksi pantu. - Käytettiinpä kaikenkaltaisia muitakin nimiä, jotka osottavat samaakuin edellisetkin : hyvää perheväliä. *Kotovalko, *Ikävalko, *Lempivalko - eivätkö nekin ilmaise vanhempain rakkautta poikaansa. "Valkeaverinen" on Suomalaisen kaunis. Joka sen tietää, älyää miten hyvälle moiset nimet sointuivat niin nimitetyn korvaan, varsinkin jos hän ehkä todellisuudessa olikin "musta". Hänpä kyllä tiesi todeksi runon sanat:
"musta minä muiden nähden,
valkea oman emosen".
[---]
s.31
*) Archiv f. wiss. Kunde Russlands, X. B. 2 H. Berlin 1851. ("Denkmäler des Alterthums d. Mordwinen"). - Maisteri H.Paasonen on minun pyynnöstäni hyväntahtoisesti ottanut tarkemmin selittääksensä
ylläolevia nimiä:
Kiej, kääntää artikelin tekijä "färberröthe". Moksan murteessa löytyy sana k'äj, erzjan k'ej (Tambovin läänin erzjalaisilla tietääkseni muodossa k'ij), joka merkitsee punasta väriainetta, jota saadaan erään kasvin (ven. марёиа) juurista. Puheena oleva nimenmuoto näyttää olevan tästä substantivista tavallisella johtopäätteellä tehty adjektivi, merkitykseltään = k'ij-väristä rikas (muoto
erzjalainen). [---]
[---]
Lueteltakoon tässä Mainowin mainitsemani lisäksi joitakuita tietoomme tulleita mordvalaisnimiä,joista jotkut ainakin selvästi ilmaisevat tilapäisen aiheensa: Kiej punapaine; Kartscha rikat (syntynyt lakaisemattomassa pirtissä); Scherju isotukkainen; Vidjai kylväjä (synt. kylvön aikana); Veschnjak anoja (synt. jonkun tullessa anomaan); Kschnäka aivastaja (synt. jonkun aivastaessa), Vasin esikoinen; Ura naskali; Kosäj rikas; Masakaj kaunis; Toraj verbiä torama kaakottaa (synt. hanhen kaakottaessa); Likschu tattari (synt. tattarinkylvön aikana).*
[---]
s.180
[---]
i (< ia-)-pääte.
*) Ahlqvist, Suomenkielen rakennus 23 §, huomauttaa että
eläinten, varsinkin koirain nimiä johdetaan tällä päätteellä, niinkuin Musti, Halli, Harmi vert. musta, halla, harmaa. - Huomattava on kuitenkin että niitäkin on pitempimuotoisia. esim. Hal. 18: 498 Harmio.Usein tämmöiset nimet esiintyvät lyhyemmästi i-päätteisinä, esim. Halli, Koivi, Tauli, Tähti, Pauni. *) Samoin sukunimissäkin tapaa usein kaksi rinnakkaismuotoa,toinen ia-, io-, toisen i-päätteisen, varsinkin silloin kun nimi vielä jatkuu nen-päätteiseksi sekä myöskin la-päätteisissä paikkainnimissä. Niin ovat esim. Polvinen = Parviainen, Päivinen = Päiviöinen, Päivilä = Päiviölä, Pärssinen = Pärssiäinen, Kaukinen = Kaukiainen j. n. e.
[---]
s.246
[---]
Niinikään mieluisa, jos sattui olemaan heidän kuopuksensa, iltapuolella ikäänsä heille syntynyt: *Kuopio lienee hänelle silloin nimeksi pantu. - Käytettiinpä kaikenkaltaisia muitakin nimiä, jotka osottavat samaakuin edellisetkin : hyvää perheväliä. *Kotovalko, *Ikävalko, *Lempivalko - eivätkö nekin ilmaise vanhempain rakkautta poikaansa. "Valkeaverinen" on Suomalaisen kaunis. Joka sen tietää, älyää miten hyvälle moiset nimet sointuivat niin nimitetyn korvaan, varsinkin jos hän ehkä todellisuudessa olikin "musta". Hänpä kyllä tiesi todeksi runon sanat:
"musta minä muiden nähden,
valkea oman emosen".
[---]
4.2.14
Postivormuista.
Postarkiv 3/1909
Jo varhain rupesivat postin palveluksessa olevat henkilöt käyttämään eri tunnusmerkkejä, joista näkyi, mitä tointa he hoitivat. Niinpä oli postinkuljettajilla (tai oikeammin kirjeenviejillä) Rooman valtakunnassa tunnusmerkkinä pieni pronssikilpi. Keskiajan postinkuljettajilla oli rinnassa, olalla tai kainalovarressa vaakuna sekä lisäksi pitkä, rautaisella päällä varustettu puusauva, jonka avulla he matkoillaan hyppäsivät ojien ja pensasaitojen yli. Pukunsa oli samanlainen kuin sen aikuisten yksityistenkin henkilöiden.
Erityistä virkapukua rupesivat postivirkailijat käyttämään verrattain myöhään. Virkapuvun käyttäminen johtuu nähtävästi siitä, että kun hallitsijat hankkivat itselleen vakinaista sotaväkeä ja varustivat sitä erityisellä puvulla, niin vaati hallitsijani arvo, että heidän palveluksessaan olevat siviilivirkailijatkin käyttäisivät virkapukua, jotta he jo ulkoasullaankin voisivat arvokkaasti edustaa hallitusvaltaa. Samalla kun vormu oli kunniapukuna. jonka piti korottaa virkailijan arvoa yleisön silmissä, vaikutti se lisaksi siksi paljon, että virkailijan oli helpompi suorittaa virkatehtäviään.
Virkapuvun käyttäminen tuli siten jotenkin yleiseksi itsevaltaisissa maissa. Harvemmin sitä käytettiin tasavalloissa. Niinpä esim. Sveitsin postivirkailijoilla ei ole virkapukua, harvoja poikkeuksia lukuunottamatta.
Niissä maissa, joissa postivirkailijat käyttävät virkapukua, on se tavallisesti sotilaallista mallia. Venäjällä on se vihreänvärinen, Bayerissa vaaleansininen, muualla Saksassa tummansininen, toisin sanoen samaa väriä kuin asianomaisen maan sotilasvormukin.
Postin rauhallista tehtävää kuvaa usein virkailijain päähineessä oleva merkkikiiva. Sellaisena käytetään pientä postitorvea, pyörä, jonka keskellä on kirje ja ympärillä siipiä tai palmunoksia, valtakunnan vaakuna v. m.
Milloin postivirkailijat ovat velvolliset käyttämään virkapukua, siitä löytyy eri määräyksiä eri maissa. Yhdessä suhteessa on kuitenkin sama määräys voimassa miltei kaikkialla, nimittäin siinä, että kirjeenkantajain on virantoimituksessaan käytettävä virkapukua. Hyöty tästä määräyksestä on ilmeinen: kirjeenkantaja tunnetaan jo kaukaa, virkapukunsa on todisteena siitä, ettii hän on postin palveluksessa ja oikeutettu jakelemaan ja vastaanottamaan yleisön lähetyksiä j. n. e. Sitä paitsi on kirjeenkantaja esim. etääminillä paikkakunnilla maaseudulla ainoa, joka edustaa postilaitosta, mistä syystä se on paikallaan, että hän virantoimituksessaan esiintyy toisten puvuista eroavassa ja laitoksen arvoa vastaavassa vormussa. Muutamissa maissa pannaankin siitä syystä huomiota siihen, että kirjeenkantajalla on helposti tunnettava virkapuku. Tanskassa esimerkiksi käyttävät maalaiskirjeenkantajat tulipunaista takkia, johon kuuluu keltainen kaulus.
Virkapukua käyttävät myöskin miltei kaikkialla postiljoonit, jotka välittävät postinvaihtoa postivaunujen kanssa. Mitä virkapuvun hankkimiseen postiljooneille tulee, menetellään siinä suhteessa eri tavoin.
Würtembergissä esim. teettää postilaitos puvut omalla kustannuksellaan ja jättää ne maksutta postiljoonien käytettäviksi. Toisissa maissa taas, kuten Belgiassa, Saksassa y. m., pitää postilaitos liuolta niiden valmistamisesta, kuin myöskin siitä, että postiljoonit saavat ostaa niitä alennetulta hinnasta. Yleisenä sääntönä on sitä paitsi, että kaikkien virkamiesten ja postiljoonien, jotka ovat suoranaisessa tekemisessä yleisön kanssa, on käytettävä virkapukua. Sisätöissä toimivilla virkailijoilla sitä vastoin on suuri vapaus virkapuvun käyttämiseen nähden.
(Zeitschrift für Post und Telegraphie.)
Jo varhain rupesivat postin palveluksessa olevat henkilöt käyttämään eri tunnusmerkkejä, joista näkyi, mitä tointa he hoitivat. Niinpä oli postinkuljettajilla (tai oikeammin kirjeenviejillä) Rooman valtakunnassa tunnusmerkkinä pieni pronssikilpi. Keskiajan postinkuljettajilla oli rinnassa, olalla tai kainalovarressa vaakuna sekä lisäksi pitkä, rautaisella päällä varustettu puusauva, jonka avulla he matkoillaan hyppäsivät ojien ja pensasaitojen yli. Pukunsa oli samanlainen kuin sen aikuisten yksityistenkin henkilöiden.
Erityistä virkapukua rupesivat postivirkailijat käyttämään verrattain myöhään. Virkapuvun käyttäminen johtuu nähtävästi siitä, että kun hallitsijat hankkivat itselleen vakinaista sotaväkeä ja varustivat sitä erityisellä puvulla, niin vaati hallitsijani arvo, että heidän palveluksessaan olevat siviilivirkailijatkin käyttäisivät virkapukua, jotta he jo ulkoasullaankin voisivat arvokkaasti edustaa hallitusvaltaa. Samalla kun vormu oli kunniapukuna. jonka piti korottaa virkailijan arvoa yleisön silmissä, vaikutti se lisaksi siksi paljon, että virkailijan oli helpompi suorittaa virkatehtäviään.
Virkapuvun käyttäminen tuli siten jotenkin yleiseksi itsevaltaisissa maissa. Harvemmin sitä käytettiin tasavalloissa. Niinpä esim. Sveitsin postivirkailijoilla ei ole virkapukua, harvoja poikkeuksia lukuunottamatta.
Niissä maissa, joissa postivirkailijat käyttävät virkapukua, on se tavallisesti sotilaallista mallia. Venäjällä on se vihreänvärinen, Bayerissa vaaleansininen, muualla Saksassa tummansininen, toisin sanoen samaa väriä kuin asianomaisen maan sotilasvormukin.
Postin rauhallista tehtävää kuvaa usein virkailijain päähineessä oleva merkkikiiva. Sellaisena käytetään pientä postitorvea, pyörä, jonka keskellä on kirje ja ympärillä siipiä tai palmunoksia, valtakunnan vaakuna v. m.
Milloin postivirkailijat ovat velvolliset käyttämään virkapukua, siitä löytyy eri määräyksiä eri maissa. Yhdessä suhteessa on kuitenkin sama määräys voimassa miltei kaikkialla, nimittäin siinä, että kirjeenkantajain on virantoimituksessaan käytettävä virkapukua. Hyöty tästä määräyksestä on ilmeinen: kirjeenkantaja tunnetaan jo kaukaa, virkapukunsa on todisteena siitä, ettii hän on postin palveluksessa ja oikeutettu jakelemaan ja vastaanottamaan yleisön lähetyksiä j. n. e. Sitä paitsi on kirjeenkantaja esim. etääminillä paikkakunnilla maaseudulla ainoa, joka edustaa postilaitosta, mistä syystä se on paikallaan, että hän virantoimituksessaan esiintyy toisten puvuista eroavassa ja laitoksen arvoa vastaavassa vormussa. Muutamissa maissa pannaankin siitä syystä huomiota siihen, että kirjeenkantajalla on helposti tunnettava virkapuku. Tanskassa esimerkiksi käyttävät maalaiskirjeenkantajat tulipunaista takkia, johon kuuluu keltainen kaulus.
Virkapukua käyttävät myöskin miltei kaikkialla postiljoonit, jotka välittävät postinvaihtoa postivaunujen kanssa. Mitä virkapuvun hankkimiseen postiljooneille tulee, menetellään siinä suhteessa eri tavoin.
Würtembergissä esim. teettää postilaitos puvut omalla kustannuksellaan ja jättää ne maksutta postiljoonien käytettäviksi. Toisissa maissa taas, kuten Belgiassa, Saksassa y. m., pitää postilaitos liuolta niiden valmistamisesta, kuin myöskin siitä, että postiljoonit saavat ostaa niitä alennetulta hinnasta. Yleisenä sääntönä on sitä paitsi, että kaikkien virkamiesten ja postiljoonien, jotka ovat suoranaisessa tekemisessä yleisön kanssa, on käytettävä virkapukua. Sisätöissä toimivilla virkailijoilla sitä vastoin on suuri vapaus virkapuvun käyttämiseen nähden.
(Zeitschrift für Post und Telegraphie.)
3.2.14
Gripsfigurer
Lördagsqvällen 22, 30.5.1896
Gripsfigurer, som blifvit fula af ålder, kan man lätt själf snygga upp genom att öfvermåla dem med terracotta-färg - strykes med en vanlig pensel först en gång, får så torka och strykes därefter ånyo för att det skall blifva varaktigare. Färg kan köpas iordninglagad i färghandeln. För 15 penni räcker till ganska mycket.
Gripsfigurer, som blifvit fula af ålder, kan man lätt själf snygga upp genom att öfvermåla dem med terracotta-färg - strykes med en vanlig pensel först en gång, får så torka och strykes därefter ånyo för att det skall blifva varaktigare. Färg kan köpas iordninglagad i färghandeln. För 15 penni räcker till ganska mycket.
2.2.14
Sorg i rödt.
Lördagsqvällen 22, 30.5.1896
Purpurröda sorgkläder användes i forna tider af alla kristna furstar. Alla Frankrikes konungar sörjde med rödt. Karl II af England bar purpurfärgad sorgdrägt efter sin broder Henrik, hertig af Gloucester, död 1000. På Långfredagen voro alla kardinaler höljda i purpurröda kåpor, och i denna färg sörjdes äfven påfvarne och öfriga kyrkans furstar. Denna färg på sorgdräkter användes således förr allmänt af kristenhetens furstar och i allmänhet af den romersk-katolska kyrkans krönta hufvuden, och förklaras bruket af denna sorg i purpurrödt vara en åminnelse af vår Frälsares purpurstickade kjortel, hvilken de romerska krigsknektarnc drogn lott om vid Golgatas kors.
Purpurröda sorgkläder användes i forna tider af alla kristna furstar. Alla Frankrikes konungar sörjde med rödt. Karl II af England bar purpurfärgad sorgdrägt efter sin broder Henrik, hertig af Gloucester, död 1000. På Långfredagen voro alla kardinaler höljda i purpurröda kåpor, och i denna färg sörjdes äfven påfvarne och öfriga kyrkans furstar. Denna färg på sorgdräkter användes således förr allmänt af kristenhetens furstar och i allmänhet af den romersk-katolska kyrkans krönta hufvuden, och förklaras bruket af denna sorg i purpurrödt vara en åminnelse af vår Frälsares purpurstickade kjortel, hvilken de romerska krigsknektarnc drogn lott om vid Golgatas kors.
1.2.14
Kodille tarpeellinen kirja (osa jutusta)
Kotikasvatus - lukemista joka kotiin 6-7 / 1910
Puhtaus, kirjottanut Elsa Törne, suomennos. Raittiuden Ystävien kustantama, hinta 1:50.
Kuka hyvänsä, joka vähänkään katselee ja koskettelee ympärilleen ja jonka hajuaisti on kunnossa, huomaa, että yksi suurimmista epäkohdista elämässämme on puhtauden puute, hirvittävä likaisuus, joka vallitsee yleensä kaikkialla. Likaisuutta on kaikissa paikoissa missä ihmisiä liikkuu ja missä kuitenkin "sivistyksen" pitäisi se kokonaan poistaa. Ainoastaan luonnossa, metsässä, niityllä, merellä, siellä missä ihminen ei ole likaisuuttaan levittämässä, siellä on puhtautta.
Kasvatus puhtauteen on sentähden tärkeimpiä asioita, mitä kotikasvatuksessakin olisi ajettava. Eikä ainoastaan yksin siisteyden ja sopivaisuuden kannalta, vaan etenkin terveyden ja hyvinvoinnin vuoksi olisi puhtautta edistettävä. Ulkonaisen puhtauden edistämisellä edistettäisiin myöskin sisällistä, sielun puhtautta ja sitten saataisiin keskuudestamme kokonaan poistetuksi lukuisat taudit ja sairaudet, jotka tekevät likaisuudessa elävän ihmisen koko elämän äärettömän kurjaksi.
Alussa mainittu kirja on ruotsalaisen naiskirjailijan "Solidar"- kirjan toinen osa, suomalaisessa asussaan "Puhtaus"-nimisenä. Näissä kirjoissaan tekijä ajaa kotien uudistusasiaa etupäässä, tässä osassa kotien uudistamista puhtauden periaatteen mukaan, tietäen että puhtaista kodeista leviää puhtaus myöskin kotien ulkopuolelle. Hänen uudistuksensa tähtäävät kauas, mutta vähään tässä ei saakaan pysähtyä. Innolla on käytävä puhtautta edistämään.
Näytteeksi otamme tähän joitakin kohtia mainitusta kirjasta.
V.
Puolipäivän tienoissa lauvantaina palaavat Hannu ja Greta koulusta kotiin hohtavan ja viehättävän puhtaina kuin juhlakellojen soitto - sillä me otaksumme toteutetuksi koulussa puhtaanapitovelvollisuuden, jota edellisissä luvuissa ennustimme. - Mutta minkälainen on koti, johon he tulevat.
Minkänäköinen tosiaankin on köyhä työmieskoti puolipäivänaikaan lauvantaina, etenkin silloin kuin vaimo käy tehtaassa tai on kaiken viikkoa kulkenut apuihmisenä taloissa? Tiedämme sen kaikki ja surkuttelemme noita hohtavan puhtaita lapsia, joiden täytyy kärsiä jyrkkää vastakohtaa koulun siisteyden ja kodin pakonalaisen epäsiisteyden välillä. Mutta älkäämme antako tämän räikeän vastakohdan niin häikäistä silmiämme, että tulemme valon aroiksi niiden puhtauden loimujen hohteessa, jotka ovat sytytettävät kaikkialle yli koko maan ja joiden tulee jokaisen koulun akkunasta leimuten valaista seutua.
Älkäämme uupuko, älkäämme epäilkö.
Heiluttakaamme parannusten viikatetta täälläkin, niittäkäämme pois kaikki ruma, jota aika ei enää voi sietää, että jotain valoisaa, puhdasta ja kaunista voi kasvaa sen sijaan.
Kodin pienuudesta ei välttämättömästi seuraa sen rumuus ja epäsiisteys. Matalinkin mökki voi olla paratiisi, jos vain sen asujamet ovat sellaisia, että he osaavat harrastaa siisteyttä.
Eipä ahtauskaan itsessään ole välttämätön este siisteydelle.
(Tässä olisi ehkä sopiva puhua nykyaikaisen yhteiskunnan rikoksesta, kun se sietää liian ahtaita asunnoita rajainsa sisässä, mutta tämä suuri ja tärkeä kohta vaatii osakseen erityisen luvun.)
Eivät ne ole köyhän yksinkertaiset huonekalut, jotka tekevät hänen kotinsa rumaksi ja ikäväksi.
Niiden huonekalujen ostohinta ja valmistuskustannukset, jotka nykyään ovat tavallisimmat pikkuporvarin ja ruumiillisen työntekijäin kodissa, nousevat paljo yli sen määrän, jolla voidaan tyydyttää kauneuden ja siisteyden vaatimuksia. Pari markkaa maksava puutuoli, joka on maalattu kirkkaan väriseksi, on seitsemän kertaa kauniimpi ja sitä on seitsemän kertaa helpompi pitää puhtaana kuin täytettyä venkaletta, joka kahden, kolmen käden kautta, panttilaitoksen ja jälleenmyyjän välityksellä on joutunut työmieskotiin. Ja mitä sanomme tuolista, se sanottakoon myös pöydästä, sohvasta, laatikkokirstusta, kaapista ja sängystä. Pienten ahtaitten kotien tulee välttää kuin ruttoa kaikkia, mikä imee itseensä tomua ja tahraantuu helposti.
Iloisten värien pitää sinne tulla teennäisen koreilun sijaan.
Eivät mitkään värit ole niin kestäviä kuin valkoinen, vaalean harmaa, vaalean sininen ja vaalean viheriäinen. Hyvin kestävä väri on myös punanen. Tätä arvostelua valkoisesta ei varmaankaan moni usko, joka ei ole sitä kokenut. Maalaritkin ovat väitelleet kanssani siitä.
Mutta jokainen voi vahvistaa kokemukseni kokeilun kautta. Likasen ruskea ovipieli on uudelleen maalattava joka toinen vuosi, valkoinen joka viides. Valkoinen väri on kestävämpää ja sietää paremmin pesua; se tulee vanhemmiten vain kauniimmaksi ja jos paikka paikoin tarvitsee sivellä väriä päälle, ei milloinkaan joudu pulaan löytääkseen oikeaa värivivahdusta, ei tarvitse peljätä, että vastamaalattu kohta turmelee vanhan. - Kunnia valkoiselle! Jos se tulee likaiseksi, kirkuu se niin kuuluvasti saippuaa ja vettä, että pahimmankin lika-Liisan täytyy armahtaa sitä sen hädässä.
Pankaa työmieskoteihin valkoiset ovet ja akkunalaudat, saarnatkaa heille värien iloisesta kauneudesta, että he hankkivat koteihinsa punaisia ja viheriäisiä, sinisiä ja keltaisia huonekaluja, joissa ei ole kiekuroita eikä puuleikelmiä ja joissa, mikäli mahdollista, ei olisi rasvanpitävää täytettä.
Silloin uskaltavat Hannu ja Greta jo puolipäivän aikaan lauvantaina hienoissa pyhäpuvuissaan istuutua mille tuolille tahansa ja sanoa: "Äiti kulta kuinka puhdasta sinulla jo on ja kuinka täällä on kaunista. Huomen aamulla varhain menemme isän kanssa metsään poimimaan vihantaa sintille ja ehkä löydämme sinivuokkojakin, niin että saat koristaa joka paikan."
[---]
Puhtaus, kirjottanut Elsa Törne, suomennos. Raittiuden Ystävien kustantama, hinta 1:50.
Kuka hyvänsä, joka vähänkään katselee ja koskettelee ympärilleen ja jonka hajuaisti on kunnossa, huomaa, että yksi suurimmista epäkohdista elämässämme on puhtauden puute, hirvittävä likaisuus, joka vallitsee yleensä kaikkialla. Likaisuutta on kaikissa paikoissa missä ihmisiä liikkuu ja missä kuitenkin "sivistyksen" pitäisi se kokonaan poistaa. Ainoastaan luonnossa, metsässä, niityllä, merellä, siellä missä ihminen ei ole likaisuuttaan levittämässä, siellä on puhtautta.
Kasvatus puhtauteen on sentähden tärkeimpiä asioita, mitä kotikasvatuksessakin olisi ajettava. Eikä ainoastaan yksin siisteyden ja sopivaisuuden kannalta, vaan etenkin terveyden ja hyvinvoinnin vuoksi olisi puhtautta edistettävä. Ulkonaisen puhtauden edistämisellä edistettäisiin myöskin sisällistä, sielun puhtautta ja sitten saataisiin keskuudestamme kokonaan poistetuksi lukuisat taudit ja sairaudet, jotka tekevät likaisuudessa elävän ihmisen koko elämän äärettömän kurjaksi.
Alussa mainittu kirja on ruotsalaisen naiskirjailijan "Solidar"- kirjan toinen osa, suomalaisessa asussaan "Puhtaus"-nimisenä. Näissä kirjoissaan tekijä ajaa kotien uudistusasiaa etupäässä, tässä osassa kotien uudistamista puhtauden periaatteen mukaan, tietäen että puhtaista kodeista leviää puhtaus myöskin kotien ulkopuolelle. Hänen uudistuksensa tähtäävät kauas, mutta vähään tässä ei saakaan pysähtyä. Innolla on käytävä puhtautta edistämään.
Näytteeksi otamme tähän joitakin kohtia mainitusta kirjasta.
V.
Puolipäivän tienoissa lauvantaina palaavat Hannu ja Greta koulusta kotiin hohtavan ja viehättävän puhtaina kuin juhlakellojen soitto - sillä me otaksumme toteutetuksi koulussa puhtaanapitovelvollisuuden, jota edellisissä luvuissa ennustimme. - Mutta minkälainen on koti, johon he tulevat.
Minkänäköinen tosiaankin on köyhä työmieskoti puolipäivänaikaan lauvantaina, etenkin silloin kuin vaimo käy tehtaassa tai on kaiken viikkoa kulkenut apuihmisenä taloissa? Tiedämme sen kaikki ja surkuttelemme noita hohtavan puhtaita lapsia, joiden täytyy kärsiä jyrkkää vastakohtaa koulun siisteyden ja kodin pakonalaisen epäsiisteyden välillä. Mutta älkäämme antako tämän räikeän vastakohdan niin häikäistä silmiämme, että tulemme valon aroiksi niiden puhtauden loimujen hohteessa, jotka ovat sytytettävät kaikkialle yli koko maan ja joiden tulee jokaisen koulun akkunasta leimuten valaista seutua.
Älkäämme uupuko, älkäämme epäilkö.
Heiluttakaamme parannusten viikatetta täälläkin, niittäkäämme pois kaikki ruma, jota aika ei enää voi sietää, että jotain valoisaa, puhdasta ja kaunista voi kasvaa sen sijaan.
Kodin pienuudesta ei välttämättömästi seuraa sen rumuus ja epäsiisteys. Matalinkin mökki voi olla paratiisi, jos vain sen asujamet ovat sellaisia, että he osaavat harrastaa siisteyttä.
Eipä ahtauskaan itsessään ole välttämätön este siisteydelle.
(Tässä olisi ehkä sopiva puhua nykyaikaisen yhteiskunnan rikoksesta, kun se sietää liian ahtaita asunnoita rajainsa sisässä, mutta tämä suuri ja tärkeä kohta vaatii osakseen erityisen luvun.)
Eivät ne ole köyhän yksinkertaiset huonekalut, jotka tekevät hänen kotinsa rumaksi ja ikäväksi.
Niiden huonekalujen ostohinta ja valmistuskustannukset, jotka nykyään ovat tavallisimmat pikkuporvarin ja ruumiillisen työntekijäin kodissa, nousevat paljo yli sen määrän, jolla voidaan tyydyttää kauneuden ja siisteyden vaatimuksia. Pari markkaa maksava puutuoli, joka on maalattu kirkkaan väriseksi, on seitsemän kertaa kauniimpi ja sitä on seitsemän kertaa helpompi pitää puhtaana kuin täytettyä venkaletta, joka kahden, kolmen käden kautta, panttilaitoksen ja jälleenmyyjän välityksellä on joutunut työmieskotiin. Ja mitä sanomme tuolista, se sanottakoon myös pöydästä, sohvasta, laatikkokirstusta, kaapista ja sängystä. Pienten ahtaitten kotien tulee välttää kuin ruttoa kaikkia, mikä imee itseensä tomua ja tahraantuu helposti.
Iloisten värien pitää sinne tulla teennäisen koreilun sijaan.
Eivät mitkään värit ole niin kestäviä kuin valkoinen, vaalean harmaa, vaalean sininen ja vaalean viheriäinen. Hyvin kestävä väri on myös punanen. Tätä arvostelua valkoisesta ei varmaankaan moni usko, joka ei ole sitä kokenut. Maalaritkin ovat väitelleet kanssani siitä.
Mutta jokainen voi vahvistaa kokemukseni kokeilun kautta. Likasen ruskea ovipieli on uudelleen maalattava joka toinen vuosi, valkoinen joka viides. Valkoinen väri on kestävämpää ja sietää paremmin pesua; se tulee vanhemmiten vain kauniimmaksi ja jos paikka paikoin tarvitsee sivellä väriä päälle, ei milloinkaan joudu pulaan löytääkseen oikeaa värivivahdusta, ei tarvitse peljätä, että vastamaalattu kohta turmelee vanhan. - Kunnia valkoiselle! Jos se tulee likaiseksi, kirkuu se niin kuuluvasti saippuaa ja vettä, että pahimmankin lika-Liisan täytyy armahtaa sitä sen hädässä.
Pankaa työmieskoteihin valkoiset ovet ja akkunalaudat, saarnatkaa heille värien iloisesta kauneudesta, että he hankkivat koteihinsa punaisia ja viheriäisiä, sinisiä ja keltaisia huonekaluja, joissa ei ole kiekuroita eikä puuleikelmiä ja joissa, mikäli mahdollista, ei olisi rasvanpitävää täytettä.
Silloin uskaltavat Hannu ja Greta jo puolipäivän aikaan lauvantaina hienoissa pyhäpuvuissaan istuutua mille tuolille tahansa ja sanoa: "Äiti kulta kuinka puhdasta sinulla jo on ja kuinka täällä on kaunista. Huomen aamulla varhain menemme isän kanssa metsään poimimaan vihantaa sintille ja ehkä löydämme sinivuokkojakin, niin että saat koristaa joka paikan."
[---]