Lappeenrannan Uutiset 27, 7.3.1891
Taiwaan sinisestä wäristä on aikain kuluessa laskettu jos jonkinlaisia arweluita, ja wielä tänä päiwänä kuulee siitä selityksiä, jotka jo owat aiwan wanhentuneita, eiwätkä ensinkään pidä paikkaansa. Niinpä wäitetään usein, että ilma samoin kuin wesikin näyttää wahwoissa kerroksissa siniseltä, että siis tuo sininen wäri on ilmakehän ominaisuus. Tämä oli ennen muinoin Eulerin ja Chappiuksen mielipide. Ennen heitä oliwat toiset tiedemiehet lausuneet sen mielipiteen, että taiwaan sininen wäri on subjektiwistä, että taiwas oikeastaan on wäritön, s. o. walkoinen, ja ainoastaan näyttää meistä siniseltä, samalla tawalla, kuin silmämme waalealla pinnalla näkee sinisen läntin ja wihdoin koko pinnan muuttuwan siniseksi, jos ennen olemme pitemmän aikaa katsoneet keltaista pintaa. Tähän suuntaan selitti ensiksi asian, niin kertoo meteorologi Bernter, Leonardo da Vinci, tuo kuuluisa italialainen maalari. Göthe selitti myöskin taiwaan siniwärin omalla tawallaan ja puolusti tätä selitystään innokkaasti: Awaruus ja ilmakehä owat itsessään pimeitä, mutta kun waloa lankee niihin, niin saawat ne sinisen wärin samoin kuin walaistu warjo. Owatpa muutamat koittaneet fluorescensinkin awulla selittää taiwaan sinistä wäriä, tuota omituista ilmiötä, joka on meille salaperäinen, waikka se aina onkin silmäimme edessä; niin tekiwät Lallemand ja Hartley.
Newton oli se mies, joka, samoin kuin niin useissa muissakin fysikalisissa problemeissa, astui tässäkin oikealle tolalle, waikkei hän kokonaan päässykkään totuuden perille. Hän lähti siitä tosiasiasta, että ilma heijastaa walkoisen auringonwalon siniset säteet, waan päästää punaiset säteet läpi; syyksi sinisten säteiden heijastumiseen arwelee hän interferenssi-ilmiöitä. Tämä teoria ei kuitenkaan wielä täyttänyt kaikkia waatimuksia, jonka wuoksi lordi Rayleigh w. 1871 muodosteli sitä. Hän luulee taiwaan sinisen wärin syntywän äärettömän pienien kappaleiden kautta, jotka asuwat ilmakehässä, ja joiden läpileikkaus on pienempi kuin 0,00025 millimetriä, s. o. pienempi, kuin lyhyimmät kysymykseen tulewat waloaallot. Kun auringonwalo sattuu näihin pieniin kappaleihin, niin joutuwat ne uuteen pallomaisesti lewiäwään aaltoliikkeesen. Wähyytensä wuoksi eiwät nämä kappaleet kuitenkaan heijasta yhtä paljon kaikkia aaltoja, waan ne heijastawat paljon enemmän lyhytaaltoista, sinistä waloa, kuin pitkäaaltoista, punaista waloa, ja tämä on se syy, miksi taiwas näyttää siniseltä. Jos ilmakehässä taas asuu semmoisia pieniä osia, joiden läpileikkaus on paljon suurempi, kuin aaltojen pituus, niin heijastawat nämä kaikkia waloaaltoja takaisin optikin lakien mukaan, ja heijastunut walo näyttää silloin walkoiselta. Tämä tapahtuu, kun ilmakehässä on semmoisia kappaleita, kuin sumipisaria, pöyjä, y. m; taiwashan näyttääkin silloin waalealta.
Coloriasto on väriaiheisten tekstien (ja kuvien) verkkoarkisto
(Archive for colour themed articles and images)
INDEX: coloriasto.net
M. Rynén'in Värjäyslaitoksessa (mainos)
Manufacturing Carmine.
Manufacturer and builder (11 / 1871)
[236] MANUFACTURING CARMINE. - You will find that there is some reason why carmine commands a high price, as it can not be made cheap. Here is the recipe you ask: Take 2 ounces of cochineal, rub it fine and boil in a tinned copper vessel for half an hour with 5 gallons of rain-water, to which you previously add 2 scruples of Roman alum. Let the solution stand for fifteen minutes, filter through a clean piece of flannel, the drop in a saturated solution of tin in aqua regia, as long as any thing precipitates; then stir it all up with a wooden spoon, and let it rest for 48 hours in an earthen vessel, when the carmine will be found as a layer on the bottom; then pour off the water and wash the residue with rain-water several times; every time let it settle and pour off again, then dry the carmine between blotting-paper or on flat dishes. You can not be too careful in regard to the cleanliness of your vessels and tools, the purity of the water, and the avoidance of dust, in order to obtain a beautiful bright article. The tin solution mentioned is identical to the tin mordant mentioned on page 216, answer to query 201, where the word "tin" was omitted at the end, so as t o read "two drachms of grain tin" or "granulated tin".
[236] MANUFACTURING CARMINE. - You will find that there is some reason why carmine commands a high price, as it can not be made cheap. Here is the recipe you ask: Take 2 ounces of cochineal, rub it fine and boil in a tinned copper vessel for half an hour with 5 gallons of rain-water, to which you previously add 2 scruples of Roman alum. Let the solution stand for fifteen minutes, filter through a clean piece of flannel, the drop in a saturated solution of tin in aqua regia, as long as any thing precipitates; then stir it all up with a wooden spoon, and let it rest for 48 hours in an earthen vessel, when the carmine will be found as a layer on the bottom; then pour off the water and wash the residue with rain-water several times; every time let it settle and pour off again, then dry the carmine between blotting-paper or on flat dishes. You can not be too careful in regard to the cleanliness of your vessels and tools, the purity of the water, and the avoidance of dust, in order to obtain a beautiful bright article. The tin solution mentioned is identical to the tin mordant mentioned on page 216, answer to query 201, where the word "tin" was omitted at the end, so as t o read "two drachms of grain tin" or "granulated tin".
Coloring oil red.
Manufacturer and builder (11 / 1871)
[235] COLORING OIL RED. - The article used for coloring oils, alcohols, etc., red, is simply alkanet root, which you may get at any druggist's shop; one ounce of the root is sufficient for half a gallon of oil, if you let it stand for a few days in a warm place.
[235] COLORING OIL RED. - The article used for coloring oils, alcohols, etc., red, is simply alkanet root, which you may get at any druggist's shop; one ounce of the root is sufficient for half a gallon of oil, if you let it stand for a few days in a warm place.
Recipe for Sealing-Wax. How to make Sealing-Wax.
Manufacturer and builder (11 / 1871)
[232] RECIPE FOR SEALING-WAX. - The chief ingredient of sealing-wax is shellac, which is melted and mixed with an equal or lesser weight of Venetian turpentine; for the cheaper qualities, it is adulterated with ordinary resin; too much of the latter, however, makes it brittle. The color is given by powdered paints; for black, 1 pound ivory-black with 1 pound resin and 2 pounds shellac; for red, 1 pound vermilion, 1 pound powdered chalk, 1 pound resin, and 1 pound shellac; for yellow, 1 pound chrome-yellow, 1 pound Venetian turpentine, 1 pound shellac; for white, 1 pound white-lead, 1 pound pale resin, 1 pound Venetian turpentine, 1 pound shellac; for green, 1 pound Prussian blue, 1 pound orpiment, 1 pound Venetian turpentine, 1 pound shellac; for gold, 1 pound silver-foil, 2 pounds white resin, 2 pounds Venetian turpentine, 6 pounds shellac; the transparent yellow-brown of the shellac gives the silver-foil a gold color.
[233] HOW TO MAKE SEALING-WAX. - It is curious that we have sometimes a similar experience as the examiners at the Patent-Office, who tell us that they often receive two applications for patents for similar inventions, coming from different places; while we often receive the same query from two or three persons. We usually answer only the first inquiry, which does for the rest; but our second inquirer is in this case more careful - he does not merely ask the recipe for sealing-wax, but how to make it; he appears to have an apprehension that there is something more to know about it than a mere recipe, and he is right. Here is the information desired. It is impossible to succeed in making this article when a good shellac is not used as a basis. In order to ascertain if it is fit for the purpose, you try to melt a small wuantity over a low coal-fire; if it melts easily, thoroughly, and flows well, it is good; if not, reject it. In making sealing-wax, mix fist the paints, and let them be exceedingly well pulverized; let us, for instance, suppose that you wish to make the red sealing-wax now in the trade under the name of express company sealing-wax; take 2 pounds good vermillion, and 7 pounds Paris white, (which is very fine chalk,) mix them thoroughly, then place 8 pounds shellac in a proper stoneware vessel, and heat it carefully over a moderate fire, stirring it with an iron spatula until it has become liquid; then warm 6 pounds of Venetian turpentine, and add the same to the shellac; when well mixed, add gradually the mixture of chalk and vermilion, and stir continually till you have a homogeneous whole; it is better to use for this latter purpose a pestle. The fire must be only warm enough to keep the mass fluid. When well mixed, it is taken from the fire, when a warm, smooth stone must be ready to make the sticks; in order to do this you take with a spoon, as much as is required for a stick, and roll it between the hands till it has about the shape, then place it on the warm stone and roll it with a board or metal plate; to give it a smooth surface it is, after solidification, superficially heated over a fire or proper lamp; this is the old way to make the sticks, without using forms; if you will go to the expense of procuring proper forms, you may press the sticks in them when in semisolid condition, and give them any shape, square, flat, etc. Some experience, of course, is necessary to work with success at the right stage of heat.
[232] RECIPE FOR SEALING-WAX. - The chief ingredient of sealing-wax is shellac, which is melted and mixed with an equal or lesser weight of Venetian turpentine; for the cheaper qualities, it is adulterated with ordinary resin; too much of the latter, however, makes it brittle. The color is given by powdered paints; for black, 1 pound ivory-black with 1 pound resin and 2 pounds shellac; for red, 1 pound vermilion, 1 pound powdered chalk, 1 pound resin, and 1 pound shellac; for yellow, 1 pound chrome-yellow, 1 pound Venetian turpentine, 1 pound shellac; for white, 1 pound white-lead, 1 pound pale resin, 1 pound Venetian turpentine, 1 pound shellac; for green, 1 pound Prussian blue, 1 pound orpiment, 1 pound Venetian turpentine, 1 pound shellac; for gold, 1 pound silver-foil, 2 pounds white resin, 2 pounds Venetian turpentine, 6 pounds shellac; the transparent yellow-brown of the shellac gives the silver-foil a gold color.
[233] HOW TO MAKE SEALING-WAX. - It is curious that we have sometimes a similar experience as the examiners at the Patent-Office, who tell us that they often receive two applications for patents for similar inventions, coming from different places; while we often receive the same query from two or three persons. We usually answer only the first inquiry, which does for the rest; but our second inquirer is in this case more careful - he does not merely ask the recipe for sealing-wax, but how to make it; he appears to have an apprehension that there is something more to know about it than a mere recipe, and he is right. Here is the information desired. It is impossible to succeed in making this article when a good shellac is not used as a basis. In order to ascertain if it is fit for the purpose, you try to melt a small wuantity over a low coal-fire; if it melts easily, thoroughly, and flows well, it is good; if not, reject it. In making sealing-wax, mix fist the paints, and let them be exceedingly well pulverized; let us, for instance, suppose that you wish to make the red sealing-wax now in the trade under the name of express company sealing-wax; take 2 pounds good vermillion, and 7 pounds Paris white, (which is very fine chalk,) mix them thoroughly, then place 8 pounds shellac in a proper stoneware vessel, and heat it carefully over a moderate fire, stirring it with an iron spatula until it has become liquid; then warm 6 pounds of Venetian turpentine, and add the same to the shellac; when well mixed, add gradually the mixture of chalk and vermilion, and stir continually till you have a homogeneous whole; it is better to use for this latter purpose a pestle. The fire must be only warm enough to keep the mass fluid. When well mixed, it is taken from the fire, when a warm, smooth stone must be ready to make the sticks; in order to do this you take with a spoon, as much as is required for a stick, and roll it between the hands till it has about the shape, then place it on the warm stone and roll it with a board or metal plate; to give it a smooth surface it is, after solidification, superficially heated over a fire or proper lamp; this is the old way to make the sticks, without using forms; if you will go to the expense of procuring proper forms, you may press the sticks in them when in semisolid condition, and give them any shape, square, flat, etc. Some experience, of course, is necessary to work with success at the right stage of heat.
Armagnac: Now - Television in Natural Colors
Popular Science, syyskuu 1929
By Alden P. Armagnac
Color television is here, at least in the experimental stage.In the darkened auditorium of the Bell Telephone Laboratories in New York City the other day, a young woman wearing a colored dress sat before a cabinet of frosted glass, part of a new radio vision transmitter developed by Dr. H. E. Ives and his associates in the Laboratories. A narrow beam of light from a powerful are lamp flickered across her face and figure so rapidly that it seemed to observes as if she were bathed in a steady glow of light.
At the opposite side of the auditorium, in a separate chamber, Dr. Ives peered into a telescopelike window. Through a frame scarcely larger than a postage stamp he saw the young woman, startingly likelife, with the color and pattern of her costume perfectly reproduced. Now she held up a ball of yarn, and its crimson hue was instantly visible in the peephole receiver. Other observers took turns at the magic window. They saw, in turn, an American flag, the Union Jack of Britain, a flowerpot of geraniums, each of the objects, in its distinguishing colors.
In this first demonstration of transmitting and receiving instruments for television in color, the images were sent by radio across the auditorium. The feat was accomplished by a modification of the principles on which all television - the art of seeing moving objects at a distance - is based. Suppose a beam of light falls on a bright object, and, reflected, illuminates an electric "eye," or photo-electric cell. The light permits electric current to flow through the cell. This current, transmitted by wire or radio, will light another lamp in a "receiving" television machine. But if the original beam of light is trained upon a dark object, little or no light is reflected. The electric cell does not pass a current. At the receiving end the lamp does not light.
In television the dirst beam of light, from an arc lamp in the transmitter, constantly zigzags back and forth across the face of the subject. Similarly a beam from the lamp at the receiving end is made to zigzag, exactly in step with the other, across a screen. So rapidly do the beams of light scan the entire picture, a streak at a time, that you seem to see the whole scene at once, recreated in black and white.
There were seemingly insuperable obstacles that stood between "black-and-white" and "color" television. Dr. Ives and his engineers conquered them all by inventing first, an electric eye sensitive to light of any color (most electric eyes are color-blind to red); then lamps that would glow in other colors than the pinkish-red of a tube filled with neon gas; and finally a way of transmitting and combining three pictures of a distant scene at one time instead of just one.
Photographers and color engravers know that with only three so-called primary colors it is possible to reproduce all the hues of a given scene. They make three pictures, each through a "filter" of glass or gelatin stained with one of those colors, of the colored object to be reproduced. When the three pictures are combined the object appears in its original, blended colors.
This same method now is applied to television. A girl, for example, sits before a cabinet, a beam from an arc light coursing over her. Behind panes of frosted glass are twenty-four electric "eyes," silently watching. Fourteen of them, sceened by panes of red-stained gelatin, are picking out the red spots in her dress and the tint of her cheeks. Eight others with green "filters" record the green pattern in the fabric, while two others with blue filters keep tabs on her blue eyes and anything else of a bluish tint in the scene. All three impressions are broadcast continuously and simultaneously, but on different radio channels or wave lengths.
At the receiving station three radio receivers, properly tuned, pick up the separate impulses of the red, green, and blue pictures. Newly devised lamps filled with argon gas reproduce the green and blue light with the aid of colored screens of those colors. A conventional neon lamp with a red filter used in front of it supplies the red parts of the picture. Through partly-transparent mirrors, the three lights are combined in a single beam.
The net result is a moving pencil of light that changes color, like a chameleon, to match the color of a spot touched by the arc lamp's beam in the sending machine.
By Alden P. Armagnac
Color television is here, at least in the experimental stage.In the darkened auditorium of the Bell Telephone Laboratories in New York City the other day, a young woman wearing a colored dress sat before a cabinet of frosted glass, part of a new radio vision transmitter developed by Dr. H. E. Ives and his associates in the Laboratories. A narrow beam of light from a powerful are lamp flickered across her face and figure so rapidly that it seemed to observes as if she were bathed in a steady glow of light.
At the opposite side of the auditorium, in a separate chamber, Dr. Ives peered into a telescopelike window. Through a frame scarcely larger than a postage stamp he saw the young woman, startingly likelife, with the color and pattern of her costume perfectly reproduced. Now she held up a ball of yarn, and its crimson hue was instantly visible in the peephole receiver. Other observers took turns at the magic window. They saw, in turn, an American flag, the Union Jack of Britain, a flowerpot of geraniums, each of the objects, in its distinguishing colors.
In this first demonstration of transmitting and receiving instruments for television in color, the images were sent by radio across the auditorium. The feat was accomplished by a modification of the principles on which all television - the art of seeing moving objects at a distance - is based. Suppose a beam of light falls on a bright object, and, reflected, illuminates an electric "eye," or photo-electric cell. The light permits electric current to flow through the cell. This current, transmitted by wire or radio, will light another lamp in a "receiving" television machine. But if the original beam of light is trained upon a dark object, little or no light is reflected. The electric cell does not pass a current. At the receiving end the lamp does not light.
In television the dirst beam of light, from an arc lamp in the transmitter, constantly zigzags back and forth across the face of the subject. Similarly a beam from the lamp at the receiving end is made to zigzag, exactly in step with the other, across a screen. So rapidly do the beams of light scan the entire picture, a streak at a time, that you seem to see the whole scene at once, recreated in black and white.
There were seemingly insuperable obstacles that stood between "black-and-white" and "color" television. Dr. Ives and his engineers conquered them all by inventing first, an electric eye sensitive to light of any color (most electric eyes are color-blind to red); then lamps that would glow in other colors than the pinkish-red of a tube filled with neon gas; and finally a way of transmitting and combining three pictures of a distant scene at one time instead of just one.
Photographers and color engravers know that with only three so-called primary colors it is possible to reproduce all the hues of a given scene. They make three pictures, each through a "filter" of glass or gelatin stained with one of those colors, of the colored object to be reproduced. When the three pictures are combined the object appears in its original, blended colors.
This same method now is applied to television. A girl, for example, sits before a cabinet, a beam from an arc light coursing over her. Behind panes of frosted glass are twenty-four electric "eyes," silently watching. Fourteen of them, sceened by panes of red-stained gelatin, are picking out the red spots in her dress and the tint of her cheeks. Eight others with green "filters" record the green pattern in the fabric, while two others with blue filters keep tabs on her blue eyes and anything else of a bluish tint in the scene. All three impressions are broadcast continuously and simultaneously, but on different radio channels or wave lengths.
At the receiving station three radio receivers, properly tuned, pick up the separate impulses of the red, green, and blue pictures. Newly devised lamps filled with argon gas reproduce the green and blue light with the aid of colored screens of those colors. A conventional neon lamp with a red filter used in front of it supplies the red parts of the picture. Through partly-transparent mirrors, the three lights are combined in a single beam.
The net result is a moving pencil of light that changes color, like a chameleon, to match the color of a spot touched by the arc lamp's beam in the sending machine.
Faworit bläck.
Aamulehti 211, 20.9.1903
Suomeksi suosikkimustetta on osakeyhtiö Tampereen kirjakauppa lähettänyt nähtäwäksemme. Musteella on miellyttäwä sinertäwä wäri, juoksee hywin ja on hywäksytty Suomessa käytettäwäksi wirallisissa papereissa. Muste on kyllä kaikin puolin hywää, mutta se on ulkomaalaista tuotetta, Jönköpingistä Ruotsista.
Suomeksi suosikkimustetta on osakeyhtiö Tampereen kirjakauppa lähettänyt nähtäwäksemme. Musteella on miellyttäwä sinertäwä wäri, juoksee hywin ja on hywäksytty Suomessa käytettäwäksi wirallisissa papereissa. Muste on kyllä kaikin puolin hywää, mutta se on ulkomaalaista tuotetta, Jönköpingistä Ruotsista.
New Mordant.
Scientific American 4, 21.1.1865
A new mordant, for aniline and other dyes, is said to have been discovered. It consists of acetate of aluminum and arsenitate of soda, and the discoverer, M. Shultz, believes that it is destinated o replace albumen, gluten, tannin, and other matters employed for the same purpose. He mixes, at the ordinary temperature, four grammes of the aniline violet of commerce, in powder, with a quarter of liter of acetate of alumina, and twenty grammes of arsenitate of soda, thickening it with starch boiled in water - the quantity of starch to be diminished in proportion to the darkness of the color to be fixed. In the case of prints, it is recommended to mix the arsenitate of soda and the acetate of alumina with the coloring matter, and to steam the fabric or yarns over the mixture. For dyeing it is said to be better to treat the tissue, or yarns, in the first place, with a mixture of the two salts, and afterwards to dip them in the color vat in the ordinary way. Salts or compounds of tin, combined with alumina, may be used instead of arsenical acid.
A new mordant, for aniline and other dyes, is said to have been discovered. It consists of acetate of aluminum and arsenitate of soda, and the discoverer, M. Shultz, believes that it is destinated o replace albumen, gluten, tannin, and other matters employed for the same purpose. He mixes, at the ordinary temperature, four grammes of the aniline violet of commerce, in powder, with a quarter of liter of acetate of alumina, and twenty grammes of arsenitate of soda, thickening it with starch boiled in water - the quantity of starch to be diminished in proportion to the darkness of the color to be fixed. In the case of prints, it is recommended to mix the arsenitate of soda and the acetate of alumina with the coloring matter, and to steam the fabric or yarns over the mixture. For dyeing it is said to be better to treat the tissue, or yarns, in the first place, with a mixture of the two salts, and afterwards to dip them in the color vat in the ordinary way. Salts or compounds of tin, combined with alumina, may be used instead of arsenical acid.
Things to Make in Your Home Laboratory
Popular Science, 1935
By Raymond B. Wailes
Products of Industrial Chemistry May be Reproduced by the Amateur, Supplying Useful Things at Low Cost
Money-saving, instructive experiments await the home chemist who turns amateur manufacturer. With his meager supply of beakers and bottles, he can make many valuable everyday substances that will reveal the mysteries of industrial chemistry.
It is perfectly possible, for instance, for the amateur experimenter to make his own writing ink. Woth very little trouble he can compound a so-called "standard ink," simply by using the following government formula as a guide: Tannic acid (eleven and seven-tenths grams), gallic acid (three and eight-tenths grams), ferrous sulphate (fifteen grams), hydrochloric acid (three cubic centimeters), carbolic acid (one gram), water soluble blue dye (three and five-tenths grams), and 1,000 cubic centimeters of water.
The ferrous sulphate in this formula is our old friend iron sulphate, or copperas. If hydrochloric acid is not handy, muriatic acid can be used in its place, or sulphuric acid (two cubic centimeters) can be substituted. The tannic and gallic acids, strange as it may seem, are crystals. For the carbolic acid, the amateur will do best to have his corner drug store make up a solution containing five or ten centimeters of water, the entire amount beings substituted for the one gram called for in the formula. The blue dye should be water-soluble, china blue aniline dye. Methylene blue dye cannot be used as it causes a troublesome precipitation when the ink is made.
Although best results will be obtained if a small photographic balance is used to weigh out the chemicals, the experimenter lacking this piece of equipment can approximate the weights by allowing one teaspoonful for each five grams of any chemical. For the liquid measure, an ordinary eight-ounce drinking glass can be considered as holding about 240 cubic centimeters.
In following the formula, first dissolve the tannic and gallic acid crystals in about 400 cubic centimeters of water. In another beaker, containing 200 cubic centimeters of water, place the ferrous sulphate and the hydrochloric aor sulphuric acid. The dye then should be dissolved in 200 cubic centimeters of water placed in a third container. When all three solutions are ready, mix them together and add the carbolic acid solution and enough additional water to bring the total solution up to about 1,000 cubic centimeters in volume. A part of this water can be used to rinse out the containers.
Pour the resulting ink into a bottle, leaving practically no air space at the top, and stopper it tightly. The ink is then ready for aging, a process that may vary from twelve hours to several weeks. The longer the ink ages, the freer it will be of suspended particles.
If you have followed the instructions carefully, your completed solution will be a good grade of ink, known to industrial chemists as blue-black iron gallo-tannic ink. The chemistry of this ink is easily understood. First of all, the ferrous sulphate combines to form iron tannate and iron gallate when it comes in contact with the solution of tannic and gallic acids. When exposed to the air for some time, these substances turn black and are responsible for the black color the ink assumes after it has dried. The original blue color obtained when the ink flows from your pen comes from the blue dye. If a dye were not used, the writing would not be visible for several days until the iron compounds turned black. The hydrochloric or sulphuric acid serves to prevent the ink from forming a sediment, while the carbolic acid acts as a preservative to prevent mold.
Inks of other colors can be made by using different dyes. Violet, for instance, can be made by using methyl violet dye while balck can be had by employing soluble nigrosine dye. Incidentally, nigrosine dye yields a legible ink when merely dissolved in water, but the resulting solution can hardly be classed as a permanent ink.
Although not exactly part of the ink manufacturing process, the standard tests used to determine the quality of ink form interesting experiments for the amateur ink maker. One simple yardstick of quality is known as the spreading or fluidity test. This is accomplished by allowing a definite volume of the ink, about five or six drops, to fall on a sheet of paper resting on a piece of glass inclined at fortyfive degrees. The ink being tested should show approximately the same tendency to spread as other inks. Be sure, however, to use the same colume of each ink.
After a week or so of aging, homemade ink can be subjected to the opaqueness test to determine its blackness by comparing the various streaks obtained in the fluidity test. Also by soaking the paper containing the streaks of ink in water, or a fifty-percent solution of denatured alcohol, for about twenty-four hours, some idea of the comparative weathering and washability characteristics of the inks used can be obtained.
Once the theory of an iron ink is understood it is a simple matter to grasp the action of ink removers or eradicators. Most two-solution ink eradicators consist of a solution of bleaching powder in water and one of oxalic acid. In use, the bleaching powder solution is first daubed on the ink spot, allowed to remain a minute, and the surplus blotted off. Then, the oxalic acid solution is applied. The action of the two solutions is first to bleach the dye used in the ink and then to dissolve the iron compound. Another method of eradicating ink consists of soaking the spot with a one-percent solution of potassium permanganate and then following with sodium thiosulphate or "hypo" solution until the ink is colorless.
By mixing cream of tartar (potassium bitartrate) and potassium binoxalate to a paste, the home chemist can provide himself with an excellent remover of rust spots. Simply wet the abric in the area of the spot and apply the paste. Soon the brown rust stain will become colorless and at this point the cloth should be rinsed in water. In using these chemicals, the amateur should remember that both binoxalated and oxalates are poisonous.
Even the manufacture of a good metal polish is entirely within the scope of the home laboratory. All that is required is some whiting, precipitated chalk, crocus martis (finely divided iron oxide), and ortho-dichlorbenzine. Mix the first three in equal quantities and then wet them with the ortho-dichlorbenzine. This will form a paste polish. If a liquid polish is desired, mix ortho-dichlorbenzine with an equal volume of oleic acid. Both polishes should be appied with a cloth and rubbed briskly.
If the paste-type polish is made sufficiently fluid by using enough ortho-dichlorbenzine, the home experimenter can store it in convenient coppalsible tin tubes in the true commercial manner. Unfilled collapsible tubes can be purchased at almost any drug store. Simply pour in the paste and fold and pinch over the ends.
Any one of a number of simple formulas can be used by the home chemist in manufacturing his own transparent cement. Although a fairly good product can be obtained simply by dissolving scraps of celluloid in acetone or amyl acetate, a far better adhesive can be made by using cellulose acetate in place of the celluloid. The product then will be non-inflammable but because of the solvent used will have a tendency to blush or whiten as it evaporates. To prevent this, an additional solvent, ethyl lactate, can be added. Being what is known as a "high boiler," it will raise the boiling point of the mixture and retard the evaporation of the solvent.
Taking all of these suggestions into consideration, the home chemist will find that one of the best cements will consists of the following: acetone (ninety cubic centimeters), ethyl lactate (ten cubic centimeters), and cellulose acetate (ten grams). If the resulting cement is too thin, it can be thickened by adding more cellulose acetate. Incidentally, it will take the cellulose acetate at least two days to dissolve in the solvent so do not be in a hurry to put your finished cement to work.
Another cement employing a plastizer to improve its bending and flexing qualities can be made by mixing cellulose acetate with about twenty-five pwecent of its weight of ethyl phthalate and dissolving it in a liquid made by mixing acetone (fifty parts), ethyl lactate (twenty parts), ethyl acetate (fifteen parts), and toluene (fifteen parts). The resulting cement can be used on any material except rubber and may be packaged in collapsible tubes if some precaution is taken to keep them air-tight.
Perhaps you have at some time wondered about the transparent, jellylike caps often used to cover the stoppers on medicine bottles, iodine vials, and pill jars. These too can be made in the home laboratory. In fact, the home chemist can put them to good use in keeping his stored chemicals fresh and free from moisture.
The inexpensive mixture used in making the jellylike coating consists of unflavored and unsweetened cooking gelatine (eleven grams), water (seven cubic centimeters), and ten drops of glycerin. Heat the mixture slowly over a water bath, stirring it continually. When a liquid results, dip the stoppered ends of several bottles into the solution and allow them to dry. After several hours, their necks and corks will be encased in the same celluloidlike caps that you have always asssociated with a drug store. If colored caps are desired, the mixture can be colored with any ordinary household dye.
By Raymond B. Wailes
Products of Industrial Chemistry May be Reproduced by the Amateur, Supplying Useful Things at Low Cost
Money-saving, instructive experiments await the home chemist who turns amateur manufacturer. With his meager supply of beakers and bottles, he can make many valuable everyday substances that will reveal the mysteries of industrial chemistry.
It is perfectly possible, for instance, for the amateur experimenter to make his own writing ink. Woth very little trouble he can compound a so-called "standard ink," simply by using the following government formula as a guide: Tannic acid (eleven and seven-tenths grams), gallic acid (three and eight-tenths grams), ferrous sulphate (fifteen grams), hydrochloric acid (three cubic centimeters), carbolic acid (one gram), water soluble blue dye (three and five-tenths grams), and 1,000 cubic centimeters of water.
The ferrous sulphate in this formula is our old friend iron sulphate, or copperas. If hydrochloric acid is not handy, muriatic acid can be used in its place, or sulphuric acid (two cubic centimeters) can be substituted. The tannic and gallic acids, strange as it may seem, are crystals. For the carbolic acid, the amateur will do best to have his corner drug store make up a solution containing five or ten centimeters of water, the entire amount beings substituted for the one gram called for in the formula. The blue dye should be water-soluble, china blue aniline dye. Methylene blue dye cannot be used as it causes a troublesome precipitation when the ink is made.
Although best results will be obtained if a small photographic balance is used to weigh out the chemicals, the experimenter lacking this piece of equipment can approximate the weights by allowing one teaspoonful for each five grams of any chemical. For the liquid measure, an ordinary eight-ounce drinking glass can be considered as holding about 240 cubic centimeters.
In following the formula, first dissolve the tannic and gallic acid crystals in about 400 cubic centimeters of water. In another beaker, containing 200 cubic centimeters of water, place the ferrous sulphate and the hydrochloric aor sulphuric acid. The dye then should be dissolved in 200 cubic centimeters of water placed in a third container. When all three solutions are ready, mix them together and add the carbolic acid solution and enough additional water to bring the total solution up to about 1,000 cubic centimeters in volume. A part of this water can be used to rinse out the containers.
Pour the resulting ink into a bottle, leaving practically no air space at the top, and stopper it tightly. The ink is then ready for aging, a process that may vary from twelve hours to several weeks. The longer the ink ages, the freer it will be of suspended particles.
If you have followed the instructions carefully, your completed solution will be a good grade of ink, known to industrial chemists as blue-black iron gallo-tannic ink. The chemistry of this ink is easily understood. First of all, the ferrous sulphate combines to form iron tannate and iron gallate when it comes in contact with the solution of tannic and gallic acids. When exposed to the air for some time, these substances turn black and are responsible for the black color the ink assumes after it has dried. The original blue color obtained when the ink flows from your pen comes from the blue dye. If a dye were not used, the writing would not be visible for several days until the iron compounds turned black. The hydrochloric or sulphuric acid serves to prevent the ink from forming a sediment, while the carbolic acid acts as a preservative to prevent mold.
Inks of other colors can be made by using different dyes. Violet, for instance, can be made by using methyl violet dye while balck can be had by employing soluble nigrosine dye. Incidentally, nigrosine dye yields a legible ink when merely dissolved in water, but the resulting solution can hardly be classed as a permanent ink.
Although not exactly part of the ink manufacturing process, the standard tests used to determine the quality of ink form interesting experiments for the amateur ink maker. One simple yardstick of quality is known as the spreading or fluidity test. This is accomplished by allowing a definite volume of the ink, about five or six drops, to fall on a sheet of paper resting on a piece of glass inclined at fortyfive degrees. The ink being tested should show approximately the same tendency to spread as other inks. Be sure, however, to use the same colume of each ink.
After a week or so of aging, homemade ink can be subjected to the opaqueness test to determine its blackness by comparing the various streaks obtained in the fluidity test. Also by soaking the paper containing the streaks of ink in water, or a fifty-percent solution of denatured alcohol, for about twenty-four hours, some idea of the comparative weathering and washability characteristics of the inks used can be obtained.
Once the theory of an iron ink is understood it is a simple matter to grasp the action of ink removers or eradicators. Most two-solution ink eradicators consist of a solution of bleaching powder in water and one of oxalic acid. In use, the bleaching powder solution is first daubed on the ink spot, allowed to remain a minute, and the surplus blotted off. Then, the oxalic acid solution is applied. The action of the two solutions is first to bleach the dye used in the ink and then to dissolve the iron compound. Another method of eradicating ink consists of soaking the spot with a one-percent solution of potassium permanganate and then following with sodium thiosulphate or "hypo" solution until the ink is colorless.
By mixing cream of tartar (potassium bitartrate) and potassium binoxalate to a paste, the home chemist can provide himself with an excellent remover of rust spots. Simply wet the abric in the area of the spot and apply the paste. Soon the brown rust stain will become colorless and at this point the cloth should be rinsed in water. In using these chemicals, the amateur should remember that both binoxalated and oxalates are poisonous.
Even the manufacture of a good metal polish is entirely within the scope of the home laboratory. All that is required is some whiting, precipitated chalk, crocus martis (finely divided iron oxide), and ortho-dichlorbenzine. Mix the first three in equal quantities and then wet them with the ortho-dichlorbenzine. This will form a paste polish. If a liquid polish is desired, mix ortho-dichlorbenzine with an equal volume of oleic acid. Both polishes should be appied with a cloth and rubbed briskly.
If the paste-type polish is made sufficiently fluid by using enough ortho-dichlorbenzine, the home experimenter can store it in convenient coppalsible tin tubes in the true commercial manner. Unfilled collapsible tubes can be purchased at almost any drug store. Simply pour in the paste and fold and pinch over the ends.
Any one of a number of simple formulas can be used by the home chemist in manufacturing his own transparent cement. Although a fairly good product can be obtained simply by dissolving scraps of celluloid in acetone or amyl acetate, a far better adhesive can be made by using cellulose acetate in place of the celluloid. The product then will be non-inflammable but because of the solvent used will have a tendency to blush or whiten as it evaporates. To prevent this, an additional solvent, ethyl lactate, can be added. Being what is known as a "high boiler," it will raise the boiling point of the mixture and retard the evaporation of the solvent.
Taking all of these suggestions into consideration, the home chemist will find that one of the best cements will consists of the following: acetone (ninety cubic centimeters), ethyl lactate (ten cubic centimeters), and cellulose acetate (ten grams). If the resulting cement is too thin, it can be thickened by adding more cellulose acetate. Incidentally, it will take the cellulose acetate at least two days to dissolve in the solvent so do not be in a hurry to put your finished cement to work.
Another cement employing a plastizer to improve its bending and flexing qualities can be made by mixing cellulose acetate with about twenty-five pwecent of its weight of ethyl phthalate and dissolving it in a liquid made by mixing acetone (fifty parts), ethyl lactate (twenty parts), ethyl acetate (fifteen parts), and toluene (fifteen parts). The resulting cement can be used on any material except rubber and may be packaged in collapsible tubes if some precaution is taken to keep them air-tight.
Perhaps you have at some time wondered about the transparent, jellylike caps often used to cover the stoppers on medicine bottles, iodine vials, and pill jars. These too can be made in the home laboratory. In fact, the home chemist can put them to good use in keeping his stored chemicals fresh and free from moisture.
The inexpensive mixture used in making the jellylike coating consists of unflavored and unsweetened cooking gelatine (eleven grams), water (seven cubic centimeters), and ten drops of glycerin. Heat the mixture slowly over a water bath, stirring it continually. When a liquid results, dip the stoppered ends of several bottles into the solution and allow them to dry. After several hours, their necks and corks will be encased in the same celluloidlike caps that you have always asssociated with a drug store. If colored caps are desired, the mixture can be colored with any ordinary household dye.
15.3.10
Käyttäkää kotitekoista kirjoitusmustetta.
Aamulehti 195, 2.9.1903
Talollisen poika I. Kananen Wiitasaarelta on kokeillut kotitekoisen kirjoitusmusteen walmistamisessa ja on löytänyt tawan, joten parista maamme mustikkalajista woidaan walmistaa erinomaisen hywää kirjoitusmustetta. Tapa on yksinkertainen, jotta se taloudessakin tulisi ottaa yleisesti käytäntöön warsinkin kun ulkolaisen kirjoitusmusteen tuonti maahan näyttä wielä olewan jokseenkin suuri.
Sian mustikkaa, jota niin tawattoman runsaat warastot kesäisin löytyy metsissämme woidaan hywällä menestyksellä käyttää kirjoitusmusteen walmistamiseen.
Mainitusta marjalajista mustetta walmistettaissa ei ensinkään tarwitse käyttää wettä, syystä, että se sisältää melkoisen määrän nestettä, joka on sopiwampaa tähän tarkoitukseen kuin wesi.
Erittäin mielyttäwän näköistä kirjoitusmustetta saadaan sianmustikoista, kun särjetään ne padassa ja pannaan sekaan kohtuullinen määrä keittosuolaa, sekä annetaan wähän kiehahtaa. Kiehahtaessa surwotaan kuoria, että wäri niissä paremmin liukeneisi. Neste siivilöidään märän palttinawaatteen läpi. Tällä lailla tehdyllä musteella on se hywä ominaisuus, että se ei syö kynää, eikä liukene paperin kastuessakaan.
Erinomainen juoksewa punainen kirjoituswäri, joka kohta kirjoitettua muuttuu mustaksi, saadaan, kun ennen mainittuun musteeseen, jokaista tavallista mustelasia kohden pannaan noin kolme tippaa suolahappoa. Jos mainittua ainetta jokaista tawallista mustelasia kohden keitettyyn sin. mustikkamehuun pannaan 30-40 tippaa, niin saadaan woimakas punainen wäri, joka wasta kolmen wuorokauden kuluttua kirjoittamisen jälkeen muuttuu mustaksi.
Tawallisista mustikoista woidaan myöskin walmistaa kaunista heleän punaista kirjoituswäriä, (jonkun aikaa paperilla oltuaan saapi sinertäwän wärin), kun pannaan kaksi osaa mustikoita, sekä tiputetaan sekaan jokaista tawallista mustelasia kohden 10-15 tippaa suolahappoa. Tämän jälkeen särjetään mustikat hywin ja pannaan sekaan yksi osa kiehuwaa wettä. Teos siiwilöidään märän palttinawaatteen läpi.
Mustetta tulee aina, kuten tawallista, säilyttää puteleissa.
Wiime mainittua mustelajia sopii hywin suosittaa käytettäwäksi koti- ja kansakouluissa, koska sen wäri pysyy waihtelewana ja näin muodoin waikuttaa aina uutena silmälle. Tällä keinolla tulisi kirjoitustaidon oppiminen ihmisen näköaistia huwittawammaksi.
Talollisen poika I. Kananen Wiitasaarelta on kokeillut kotitekoisen kirjoitusmusteen walmistamisessa ja on löytänyt tawan, joten parista maamme mustikkalajista woidaan walmistaa erinomaisen hywää kirjoitusmustetta. Tapa on yksinkertainen, jotta se taloudessakin tulisi ottaa yleisesti käytäntöön warsinkin kun ulkolaisen kirjoitusmusteen tuonti maahan näyttä wielä olewan jokseenkin suuri.
Sian mustikkaa, jota niin tawattoman runsaat warastot kesäisin löytyy metsissämme woidaan hywällä menestyksellä käyttää kirjoitusmusteen walmistamiseen.
Mainitusta marjalajista mustetta walmistettaissa ei ensinkään tarwitse käyttää wettä, syystä, että se sisältää melkoisen määrän nestettä, joka on sopiwampaa tähän tarkoitukseen kuin wesi.
Erittäin mielyttäwän näköistä kirjoitusmustetta saadaan sianmustikoista, kun särjetään ne padassa ja pannaan sekaan kohtuullinen määrä keittosuolaa, sekä annetaan wähän kiehahtaa. Kiehahtaessa surwotaan kuoria, että wäri niissä paremmin liukeneisi. Neste siivilöidään märän palttinawaatteen läpi. Tällä lailla tehdyllä musteella on se hywä ominaisuus, että se ei syö kynää, eikä liukene paperin kastuessakaan.
Erinomainen juoksewa punainen kirjoituswäri, joka kohta kirjoitettua muuttuu mustaksi, saadaan, kun ennen mainittuun musteeseen, jokaista tavallista mustelasia kohden pannaan noin kolme tippaa suolahappoa. Jos mainittua ainetta jokaista tawallista mustelasia kohden keitettyyn sin. mustikkamehuun pannaan 30-40 tippaa, niin saadaan woimakas punainen wäri, joka wasta kolmen wuorokauden kuluttua kirjoittamisen jälkeen muuttuu mustaksi.
Tawallisista mustikoista woidaan myöskin walmistaa kaunista heleän punaista kirjoituswäriä, (jonkun aikaa paperilla oltuaan saapi sinertäwän wärin), kun pannaan kaksi osaa mustikoita, sekä tiputetaan sekaan jokaista tawallista mustelasia kohden 10-15 tippaa suolahappoa. Tämän jälkeen särjetään mustikat hywin ja pannaan sekaan yksi osa kiehuwaa wettä. Teos siiwilöidään märän palttinawaatteen läpi.
Mustetta tulee aina, kuten tawallista, säilyttää puteleissa.
Wiime mainittua mustelajia sopii hywin suosittaa käytettäwäksi koti- ja kansakouluissa, koska sen wäri pysyy waihtelewana ja näin muodoin waikuttaa aina uutena silmälle. Tällä keinolla tulisi kirjoitustaidon oppiminen ihmisen näköaistia huwittawammaksi.
On Sumach.
Scientific American 4, 7.10.1854
(For the Scientific American.)
Having read articles in the daily press on sumach, and observing they conveyed no correct information to the cultivator, I have sent you the following essay on the subject. Sicilian sumach is imported largely into the country from Messina and Palermo, and some of the inferior quality, grown in Germany, from Trieste; and if the sumach of this country can supply its place, the object would be worthy the attention of our citizens. Most of the following observations have appeared in print, some years since, under my signature.
Sumach is extensively used in morocco tanning, in calico pritning and dyeing. - There are three species used in dyeing - the Rhus Glabrum, the Rhus Coriæria, and the Rhus Cotinus. The two first only are used in tanning. The first is the common sumach of North America, and is much used by out coutry dyers, and, to a limited extent, by out tanners. The annual shoots of petuncles, with their leaves, are gathered, and in this country are mostly used without grinding. A writer in one of the New York papers gives directions to grind the wood of this shrub with the leaves and annual shoots but this would so injure the quality as t orender the mass of little or no value.
It is well known that the most astringent vegetables, or those containing the largest portion of gallic acid, are brought from warm climates, and the following facts will prove that the quality of the sumach depends on the warmth of the climate in which it grows. The sumach in Europe is the Rhus Coriæria. That which is gwon in the north of Europe, and imported from Trieste, si no better than our northern sumach, excepting a small portion grown in Tyrol, and even this is not superior to the best American grown in New Jersey; whereas thatgrown in Sicily, Syria, Spain and Portugal, where it is cultivated with great care, is found by experience to be vastly superior to that from Trieste, and sells much higher. A similar difference is observable in the sumach grown in this country. That from the southern side of New Jersey is superior to the new York, and that from Virginia to the New hersey; and there is no doubt that if raised in the Sourhtern States, dried with care, and ground fine, it would be equal tothe best imported.
Sumach should be cut or gathered in clear weather, and should be so spread on a floor as to dry rapidly, for it only a small part should ferment, the whole mass will be seriously injured. It should be finely ground when dry, and packed in bags. No rain or dew should fall on it after cutting, for even the damp from the hold of a ship will greatly injure its quality.
I have been informed that our sumach will not reproduce from the seed, and if this be true there would be some difficulty in extending the article to a great extent by field cultivation. Sumach is said to be hybridous, in which case plants from Sicily planted among our glabrum, would enable the seed of both to reproduce, and in this way might be extended at pleasure. Mr. George Woodward, however, has sent the seed of our glabrum to England, and there it reproduces very readily.
The Rhus Cotinus, or Venice sumach, is also an important article in dyeing. It is known in England as young fustic, the stem and trunk of the shrub, and the root, are extensively used in Europe for dyeing golden and orange yellows. The leaves and stalk, when bruised, have an aromatic, but pungent and acid scent.
The plant is grown in our nurseries, and sold as an ornamental shrub. It is by some called the fringe tree, and by others the burning bush; at least such have been the names given me by inquiring of the owners. It bears a large drab-colored flossy blossom, and grows luxuriantly in many of our shrubberies.
The Cotinus is cultivated by layers. The stalks sent to market in Europe are from one to two inches in diameter, with the bark taken off. There is considerable white sap outside, and dark yellow and orange-colored rings inside, the latter being the coloring matter. The leaves from this wood, when cut, are gathered, dried, and ground with the other sumach.
Wm. Partridge.
Binghamton, N. Y.
(For the Scientific American.)
Having read articles in the daily press on sumach, and observing they conveyed no correct information to the cultivator, I have sent you the following essay on the subject. Sicilian sumach is imported largely into the country from Messina and Palermo, and some of the inferior quality, grown in Germany, from Trieste; and if the sumach of this country can supply its place, the object would be worthy the attention of our citizens. Most of the following observations have appeared in print, some years since, under my signature.
Sumach is extensively used in morocco tanning, in calico pritning and dyeing. - There are three species used in dyeing - the Rhus Glabrum, the Rhus Coriæria, and the Rhus Cotinus. The two first only are used in tanning. The first is the common sumach of North America, and is much used by out coutry dyers, and, to a limited extent, by out tanners. The annual shoots of petuncles, with their leaves, are gathered, and in this country are mostly used without grinding. A writer in one of the New York papers gives directions to grind the wood of this shrub with the leaves and annual shoots but this would so injure the quality as t orender the mass of little or no value.
It is well known that the most astringent vegetables, or those containing the largest portion of gallic acid, are brought from warm climates, and the following facts will prove that the quality of the sumach depends on the warmth of the climate in which it grows. The sumach in Europe is the Rhus Coriæria. That which is gwon in the north of Europe, and imported from Trieste, si no better than our northern sumach, excepting a small portion grown in Tyrol, and even this is not superior to the best American grown in New Jersey; whereas thatgrown in Sicily, Syria, Spain and Portugal, where it is cultivated with great care, is found by experience to be vastly superior to that from Trieste, and sells much higher. A similar difference is observable in the sumach grown in this country. That from the southern side of New Jersey is superior to the new York, and that from Virginia to the New hersey; and there is no doubt that if raised in the Sourhtern States, dried with care, and ground fine, it would be equal tothe best imported.
Sumach should be cut or gathered in clear weather, and should be so spread on a floor as to dry rapidly, for it only a small part should ferment, the whole mass will be seriously injured. It should be finely ground when dry, and packed in bags. No rain or dew should fall on it after cutting, for even the damp from the hold of a ship will greatly injure its quality.
I have been informed that our sumach will not reproduce from the seed, and if this be true there would be some difficulty in extending the article to a great extent by field cultivation. Sumach is said to be hybridous, in which case plants from Sicily planted among our glabrum, would enable the seed of both to reproduce, and in this way might be extended at pleasure. Mr. George Woodward, however, has sent the seed of our glabrum to England, and there it reproduces very readily.
The Rhus Cotinus, or Venice sumach, is also an important article in dyeing. It is known in England as young fustic, the stem and trunk of the shrub, and the root, are extensively used in Europe for dyeing golden and orange yellows. The leaves and stalk, when bruised, have an aromatic, but pungent and acid scent.
The plant is grown in our nurseries, and sold as an ornamental shrub. It is by some called the fringe tree, and by others the burning bush; at least such have been the names given me by inquiring of the owners. It bears a large drab-colored flossy blossom, and grows luxuriantly in many of our shrubberies.
The Cotinus is cultivated by layers. The stalks sent to market in Europe are from one to two inches in diameter, with the bark taken off. There is considerable white sap outside, and dark yellow and orange-colored rings inside, the latter being the coloring matter. The leaves from this wood, when cut, are gathered, dried, and ground with the other sumach.
Wm. Partridge.
Binghamton, N. Y.
Murexide as a Coloring Matter for Wool.
Scientific American 4, 7.10.1854
- The following article form the Bulletin de la Societic Industrielle de Mulhouse, will be read with great interest by all our chemists, in woolen cloths, carpet, shawl, and de laine manufactories:
"The beautiful researches of Liebig and Wohler upon uric acid and its derivates made us acquainted with a peculiar substance, to which they gave the name of allonxan. This body is obtained by adding very gradually 1 part of uric acid to 4 parts of nitric acid, of a specific gravity of from 1.45 to 1.5. The uric acid is dissolved with evolution of nitrogen and carbonic acid, accompanied by a considerable rise of temperature, which must be prevented as much as possible; on coolong, the mass becomes nearly solid, from the deposition of white granular crystals of alloxan. If these cyrstals be drained and dissolved in a very small quantity of water, and exposed to spontaneous evaporation in a moderately warm room, large, brilliant, colorless crystals, in the form of short right rhombic prisms, will be obtained. Alloxan is remarkable for the facility with which it undergoes changes when treated with different substances, and for the number of curious compounds thereby produced. Thus if sulhuretted hydrogen gas be passed through a solution of it, sulphur is precipitated and a new body formed, to which the name of alloxantine has been given; or if its solution be slightly acidulated and a slip of zinc placed in it, the same body will be produced under the influence of the nascent hydrogen evolved during the dissolution of the zinc. Alloxantine being sparingly soluble in cold water, readily separates in crystals, which may be obtained pure by solution in hot water, for, unlike alloxan, it is not decomposed by continued boiling. If 4 parts of alloxantine and 7 of alloxan be dissolved in 240 parts of boiling water, and 80 parts of carbonate of ammonia be added, a very peculiar body will be formed, which will crystallize on the liquor cooling. These crystals are of a beautiful garnet-red color by transmitted light, and have a beautiful iridescent green by reflected light. To this body the name murexide was given, from the Murex or shell-fish, from which it was supposed the Tyrian purple was formerly procured. Previous however to the experiments of Liebig and Wohler, Dr. Prout had described the same substance under the name of purpurate of ammonia, but obtained in a somewhat different way. So readily is this body formed, that a solution of alloxan will stain the skin purple in consequence of its production. This fact led its second discoverers to imagine that, like the Tyrian purple, it might be employed as a dye-stuff. The difficulty however of obtaining it, and of fixing it upon the fabric when formed, prevented for that time the idea from proving fertile.
Some time since, however, Dr. Sacc turned his attention to the subject, and led by the fact above mentioned, that a solution of alloxan stained the skin, came to the conclusion, that by impregnating a piece of woolen cloth with that substance, he might be able to produce the murexide directly in the tissue. He tried the experiment, and succeeded in dyeing a piece of cloth of an amaranthus tint, far more beautiful than that produced by cochnieal. He communicated the results of his first experiments, still incomplete, to M. Alvert Schlumberger, who has succeeded, by modifying and completing the experiments of Dr. Sacc, in rendering the process, merely indicated by the latter, perfectly practicable.
His process is simple enough. He prepares a solution of alloxan, formed of 30 grms. of allonxan to each litre of water, and soaks the tissue to be dyed in it, the excess of liquid being then squeezed out int he ordinary way, or by pressure between rollers. The cloth is then dried at a gentle temperature, and after an ageing of twenty-four hours the color is brought out by passing the cloth over a roller heated to 212°F. For this purpose the drying machines composed of several drums would answer perfectly, the cloth being successively passed over each, the greatest care being taken to avoid the folds; woolen yarn and wool should be put in a stove heated by steam. According as the heat is communicated to the cloth, a magnificent purple tint, far more beautiful than anything hitherto produced by the ammoniaval preparation of cochineal, or by red dye-woods, makes its appearance as if by magic. The intensity varies according to the stregth of the solution of alloxan which has been employed. It is only necessary to wash the cloth in cold water to give to the shade its full brilliancy.
M. Sacc found that the finest and most vivid shades could only be communicated to the tissues mordanted wit hsalts of peroxyd of tin, and M. Schlumberger has confirmed this observation. Cloth not mordanted did not give very satisfactory results, even after a prolonged exposure to warm and damp air. He obtained the most satisfactory results by soaking the cloth in a solution composed of equal parts of perchloride of tin and oxalic acid, of a specific gravity of 1.006. In this solution, at a temperature of about 100°F., the cloth is to be allowed to remain for an hour, then rinsed and dried, and is then fit to be treated with alloxan. If stronger solutions of the mordant be employed, there is a considerable loss of coloring material, and a detorioration of the shade. - This may be attributed to the presence of too great an excess of stannic acid, which from its opacity may mask the murexide, or by its acid re-action may decompose it. This is especially the case if chloride of tin be employed instead of stannate of soda. Experience has shown that fabrics freshly mordanted give better results than those which have been mordanted for some time; the depreciation in purity and brilliancy of tint in the latter may even amount to 20 or 30 per cent.
Murexide, as we have already remarkded, being produced by the action of heat and ammonia, it occurred to M. Daniel Dollfus, and the other members of the committee for the chemical arts, appointed by the Societe Industrielle of Mulhouse, to report upon the memoirs of M. Schlumberger, to try the effect of exposing a piece of cloth, treated with alloxan, to the vapors of ammonia. The result confirmed their anticipations, for the color was immediately produced without the necessity of ageing the cloth after its impregnatin with the alloxan. - There can therefore be no doubt that the best results will be obtained in future by the employment of ammoniacal vaports, for, besides the saving of time, there will also be a saving of alloxan. This substance is very liable to decompose, especially in the presence of even minute traces of reducing agents, such as protochloride of tin or sulphurous acid; traces of the latter substance always remain in the cloth after the operation of bleaching, not matter how well washed it may be, and would be quite sufficient to prevent the formation of the murexide.
As yet all the attempts that have been made to communicate the murexide-purple to cotton or silk have failed, that substance having an affinity apparrently only for wool, to which it gives a very permanent and durable dye. Sunlight, so destructive to other purples, appears to have but little action upon that of the murexide; a piece of cloth dyed of a rose color had its tint scarcely altered by evposure to the full action of the strongest sunshine during two days, and the color was only fully discharged by an exposure of more than two months. - Boiling water and steam completely destroy the color produced upon cloth mordanted with salts of tin; the decoloration commences in boiling water at a temperature of about 158° F., and augments with the increase of temperature. - This destruction of the dye is caused by the action of the mordant, for cloth dyed without the use of a mordant not only supports to a certain extent the action of boiling water, but even acquires a uniform, and perhaps a more beautiful and deeper tint than that given by prepared woolen fabrics. Further experience ma yshow that hot water and the application of ammonia alone may be advantageouly substituted for the mordanting and the passage over heated cylinders.
(To be concluded next week.)
- The following article form the Bulletin de la Societic Industrielle de Mulhouse, will be read with great interest by all our chemists, in woolen cloths, carpet, shawl, and de laine manufactories:
"The beautiful researches of Liebig and Wohler upon uric acid and its derivates made us acquainted with a peculiar substance, to which they gave the name of allonxan. This body is obtained by adding very gradually 1 part of uric acid to 4 parts of nitric acid, of a specific gravity of from 1.45 to 1.5. The uric acid is dissolved with evolution of nitrogen and carbonic acid, accompanied by a considerable rise of temperature, which must be prevented as much as possible; on coolong, the mass becomes nearly solid, from the deposition of white granular crystals of alloxan. If these cyrstals be drained and dissolved in a very small quantity of water, and exposed to spontaneous evaporation in a moderately warm room, large, brilliant, colorless crystals, in the form of short right rhombic prisms, will be obtained. Alloxan is remarkable for the facility with which it undergoes changes when treated with different substances, and for the number of curious compounds thereby produced. Thus if sulhuretted hydrogen gas be passed through a solution of it, sulphur is precipitated and a new body formed, to which the name of alloxantine has been given; or if its solution be slightly acidulated and a slip of zinc placed in it, the same body will be produced under the influence of the nascent hydrogen evolved during the dissolution of the zinc. Alloxantine being sparingly soluble in cold water, readily separates in crystals, which may be obtained pure by solution in hot water, for, unlike alloxan, it is not decomposed by continued boiling. If 4 parts of alloxantine and 7 of alloxan be dissolved in 240 parts of boiling water, and 80 parts of carbonate of ammonia be added, a very peculiar body will be formed, which will crystallize on the liquor cooling. These crystals are of a beautiful garnet-red color by transmitted light, and have a beautiful iridescent green by reflected light. To this body the name murexide was given, from the Murex or shell-fish, from which it was supposed the Tyrian purple was formerly procured. Previous however to the experiments of Liebig and Wohler, Dr. Prout had described the same substance under the name of purpurate of ammonia, but obtained in a somewhat different way. So readily is this body formed, that a solution of alloxan will stain the skin purple in consequence of its production. This fact led its second discoverers to imagine that, like the Tyrian purple, it might be employed as a dye-stuff. The difficulty however of obtaining it, and of fixing it upon the fabric when formed, prevented for that time the idea from proving fertile.
Some time since, however, Dr. Sacc turned his attention to the subject, and led by the fact above mentioned, that a solution of alloxan stained the skin, came to the conclusion, that by impregnating a piece of woolen cloth with that substance, he might be able to produce the murexide directly in the tissue. He tried the experiment, and succeeded in dyeing a piece of cloth of an amaranthus tint, far more beautiful than that produced by cochnieal. He communicated the results of his first experiments, still incomplete, to M. Alvert Schlumberger, who has succeeded, by modifying and completing the experiments of Dr. Sacc, in rendering the process, merely indicated by the latter, perfectly practicable.
His process is simple enough. He prepares a solution of alloxan, formed of 30 grms. of allonxan to each litre of water, and soaks the tissue to be dyed in it, the excess of liquid being then squeezed out int he ordinary way, or by pressure between rollers. The cloth is then dried at a gentle temperature, and after an ageing of twenty-four hours the color is brought out by passing the cloth over a roller heated to 212°F. For this purpose the drying machines composed of several drums would answer perfectly, the cloth being successively passed over each, the greatest care being taken to avoid the folds; woolen yarn and wool should be put in a stove heated by steam. According as the heat is communicated to the cloth, a magnificent purple tint, far more beautiful than anything hitherto produced by the ammoniaval preparation of cochineal, or by red dye-woods, makes its appearance as if by magic. The intensity varies according to the stregth of the solution of alloxan which has been employed. It is only necessary to wash the cloth in cold water to give to the shade its full brilliancy.
M. Sacc found that the finest and most vivid shades could only be communicated to the tissues mordanted wit hsalts of peroxyd of tin, and M. Schlumberger has confirmed this observation. Cloth not mordanted did not give very satisfactory results, even after a prolonged exposure to warm and damp air. He obtained the most satisfactory results by soaking the cloth in a solution composed of equal parts of perchloride of tin and oxalic acid, of a specific gravity of 1.006. In this solution, at a temperature of about 100°F., the cloth is to be allowed to remain for an hour, then rinsed and dried, and is then fit to be treated with alloxan. If stronger solutions of the mordant be employed, there is a considerable loss of coloring material, and a detorioration of the shade. - This may be attributed to the presence of too great an excess of stannic acid, which from its opacity may mask the murexide, or by its acid re-action may decompose it. This is especially the case if chloride of tin be employed instead of stannate of soda. Experience has shown that fabrics freshly mordanted give better results than those which have been mordanted for some time; the depreciation in purity and brilliancy of tint in the latter may even amount to 20 or 30 per cent.
Murexide, as we have already remarkded, being produced by the action of heat and ammonia, it occurred to M. Daniel Dollfus, and the other members of the committee for the chemical arts, appointed by the Societe Industrielle of Mulhouse, to report upon the memoirs of M. Schlumberger, to try the effect of exposing a piece of cloth, treated with alloxan, to the vapors of ammonia. The result confirmed their anticipations, for the color was immediately produced without the necessity of ageing the cloth after its impregnatin with the alloxan. - There can therefore be no doubt that the best results will be obtained in future by the employment of ammoniacal vaports, for, besides the saving of time, there will also be a saving of alloxan. This substance is very liable to decompose, especially in the presence of even minute traces of reducing agents, such as protochloride of tin or sulphurous acid; traces of the latter substance always remain in the cloth after the operation of bleaching, not matter how well washed it may be, and would be quite sufficient to prevent the formation of the murexide.
As yet all the attempts that have been made to communicate the murexide-purple to cotton or silk have failed, that substance having an affinity apparrently only for wool, to which it gives a very permanent and durable dye. Sunlight, so destructive to other purples, appears to have but little action upon that of the murexide; a piece of cloth dyed of a rose color had its tint scarcely altered by evposure to the full action of the strongest sunshine during two days, and the color was only fully discharged by an exposure of more than two months. - Boiling water and steam completely destroy the color produced upon cloth mordanted with salts of tin; the decoloration commences in boiling water at a temperature of about 158° F., and augments with the increase of temperature. - This destruction of the dye is caused by the action of the mordant, for cloth dyed without the use of a mordant not only supports to a certain extent the action of boiling water, but even acquires a uniform, and perhaps a more beautiful and deeper tint than that given by prepared woolen fabrics. Further experience ma yshow that hot water and the application of ammonia alone may be advantageouly substituted for the mordanting and the passage over heated cylinders.
(To be concluded next week.)
Kasveilla värjäämisestä II.
Käsiteollisuus (1/1909)
Mitä sitte tulee värjäyksen käytännölliseen puoleen on huomattava seuraavat seikat:
Lankojen ja villojen tulee olla aivan puhtaat sekä kaikkien värjäykseen tarvittavien aineiden mitä parasta lajia. Keittoastioiden tulee olla vain kuparista, sillä tinaus sulaa helposti. Itse olen kyllä käyttänyt rautapataa, mutta on siitä se seuraus, että langat eivät tule niin kirkkaiksi. Joka värjäykseen on kattila tai pata huolellisesti pestävä hiekalla y.m.
Lankavyyhtiä pidellessä tarvitsee puhtaita keppejä, jotka eivät saa olla pihkasia.
Villat ovat jo kehrätessä niin lajiteltavat, että pitkät ja karkeat villat, jotka peittävät lampaan reidet ja vatsa, kehrätään aivun erikseen, värit kun vaikuttavat eri lailla karkeampiin ja pehmeimpiin lankoihin. Usein on hyvä värjätä villoja jo enenn kehräämistä, jos esim. tahtoo kovaksi kierrettyä lankaa. Muussa tapauksessa lanka tulee täplikästä. Langat tulevat usein, jos ovat yksi- tai useampikertaisia, erilaisia väriin nähden, jos kohta ovatkin samassa värivedessä. Lankoja on ylipäätään paras pestä juuri ennen käyttämistä nion kolmessa eli neljässä 40° lämpimässä sade- ja saippuavedessä, ja niitä ei saa hanagata. Astia, jossa langat pestään tulee olla niin tilava että vesi hyvin peittää langat. Vyyhdit huuhdotaan sitten keppien varassa useamman kerran vedessä. Sitte kun langat ovat aivan puhtaat saa ne seistä 2 vuorokautta kylmässä vedessä joka kerran kyllä vaihdetaan.
Alunoitseminen eli purettaminen tapahtuu siten, että langat keitetään ½-2 tuntia vedessä, jossa on joko alunata, kuparivihtrilliä eli viinikiveä. Puertusaineet jauhetaan hienoksi ja kiehautetaan ¼ tuntia vedessä ja jäähdytetään ennen kuin lanhat niihin laitetaan. Sitte purettamisen jälkeen lanhat väännetään ja pannaan väriveteen. Mustaksi värjättäissä tulee lankojen kyllä kuivaa purettamisen jälkeen. Purettamista ei käytetä lankoja tulipunaisiksi värjättäessä.
Värjäyksessä pujotetaan lankavyyhdit yllämainituille kepeille, jotka asetetaan kattilan eli padan reunalle. Niillä kepeillä vyyhdit sitte käännetään nopeasti keitettäessä. Jos ei ole väliä tuleeko langat vähän vaaleammiksi eli tummemmiksi voi laskea langat värikattilaan ja siellä niitäsitten kepillä kohennella. Langat eivät saa kiehua kovalla tulella, jotta eivät tulisi hauraiksi.
Muuten tulee lankoja värjättäessä tarkkaan seurata käyttöohjeita. Ja jos värjää mallin mukaan, niin voi lankojen kiehuessa ottaa pätkän, huuhtoa se nopeasti ja kuivata se ja verrata malliin. Silloin voi määritellä tuleeko lankojen vielä kiehua, sillä värin keittämisaika riippuu paljon itse kasviaineiden värivoimasta. Jos se on tuore, kuiva tahi jo kauan sitte koottu, niin antaa se aivan eri voimaista väriä. Paras on värjätä samanväriset samaan työhön tulevat langat yhtäaikaa, nillä harvoin värjätessä saa aivan samaa värilajia.
Keitettyä huuhditaan langat, jokunen laji voi jäädä väriveteen jäähtymään ja väännettyä asetetaan joko lämpimään huoneesen eli mieluimmin ulos varjoon kuivamaan. On tärkeätä huomata että värjätyt langat eivät koskaan saa kuivua päiväpaisteessa. Jos langoista kuivuttuakin vielä lähtee väriä voi ne huuhtoa kuumassa väkevässä katajavedessä.
Kotimaiset väriaineet kuten puunkuoret, kävyt, lehvät y. m. joilla värjätään, liotetaan kylmässä vedessä 1 päivää ennen käyttämistä sekä keitetään sitte tässä vedessä noin 4 tuntia. Kasvijätteet otetaan kattilasta ja huuhditaan tarkkaan vielä kylmällä vedellä, jotta niistä kaikki väriaine lähtee. Kasvit on koottava kehittyneinä ja tuoreina. Voi kyllä, ellei heti voi värjätä, kasviaineita jonkunaikaa säilyttää muutamia päiviä kylmässä eli kosteassa paikassa. Kasviaineet, joita talvitarpeiksi kootaan, kuivataan vinteillä y. m. mahdollisen hyvin ja säilytetään ne kuivattuina säkeissä kuivalla paikalla. Tässäkin on muistettava että niitä ei saa kuivata päiväpaisteessa eikä uunissa. Kuori kootaan silloin kuin se parhaiten irtautuu puusta, ja pitää sen olla sammaltumattomista puista, vaan ei juuri kovin nuorista oksista. Niitä voi käyttää sekä kuivattuina että tuoreina.
Lehdet kootaan mieluimmin juhannuksen aikaan. Myöhemmin kootuista lehdistä tulee heikompi väri. Kukkivat kasvit otetaan ennen niiden kukkimista.
Ulkomaisista väriaineista käytetään muutamia kasvilajeja, kuten Indihoa, Santelia, Krappia y. m. sekä koschenilliä, joka on eräs pieni eläin kaktuskasveissa. Tästä eläimestä saa kuivattuna punaista väriainetta (karmiinia).
Karvalankoja voi värjätä aivan samojen ohjeiden mukaan kuin villalankoja, ainoastaan on huomattava se seikka, että niihin menee vähemmin väriainetta.
Sitäpaitsi ei karvalankoja tarvitse purettaa, koska karvalangat ovat tavallisesti nahkurilla jo olleet kalkkiliuoksessa.
Lähempiä käyttöohjeita saa Suom. Käsit. Yst. laatimasta Neuvoja Kotivärjäykseen kasviaineilla.
Mitä sitte tulee värjäyksen käytännölliseen puoleen on huomattava seuraavat seikat:
Lankojen ja villojen tulee olla aivan puhtaat sekä kaikkien värjäykseen tarvittavien aineiden mitä parasta lajia. Keittoastioiden tulee olla vain kuparista, sillä tinaus sulaa helposti. Itse olen kyllä käyttänyt rautapataa, mutta on siitä se seuraus, että langat eivät tule niin kirkkaiksi. Joka värjäykseen on kattila tai pata huolellisesti pestävä hiekalla y.m.
Lankavyyhtiä pidellessä tarvitsee puhtaita keppejä, jotka eivät saa olla pihkasia.
Villat ovat jo kehrätessä niin lajiteltavat, että pitkät ja karkeat villat, jotka peittävät lampaan reidet ja vatsa, kehrätään aivun erikseen, värit kun vaikuttavat eri lailla karkeampiin ja pehmeimpiin lankoihin. Usein on hyvä värjätä villoja jo enenn kehräämistä, jos esim. tahtoo kovaksi kierrettyä lankaa. Muussa tapauksessa lanka tulee täplikästä. Langat tulevat usein, jos ovat yksi- tai useampikertaisia, erilaisia väriin nähden, jos kohta ovatkin samassa värivedessä. Lankoja on ylipäätään paras pestä juuri ennen käyttämistä nion kolmessa eli neljässä 40° lämpimässä sade- ja saippuavedessä, ja niitä ei saa hanagata. Astia, jossa langat pestään tulee olla niin tilava että vesi hyvin peittää langat. Vyyhdit huuhdotaan sitten keppien varassa useamman kerran vedessä. Sitte kun langat ovat aivan puhtaat saa ne seistä 2 vuorokautta kylmässä vedessä joka kerran kyllä vaihdetaan.
Alunoitseminen eli purettaminen tapahtuu siten, että langat keitetään ½-2 tuntia vedessä, jossa on joko alunata, kuparivihtrilliä eli viinikiveä. Puertusaineet jauhetaan hienoksi ja kiehautetaan ¼ tuntia vedessä ja jäähdytetään ennen kuin lanhat niihin laitetaan. Sitte purettamisen jälkeen lanhat väännetään ja pannaan väriveteen. Mustaksi värjättäissä tulee lankojen kyllä kuivaa purettamisen jälkeen. Purettamista ei käytetä lankoja tulipunaisiksi värjättäessä.
Värjäyksessä pujotetaan lankavyyhdit yllämainituille kepeille, jotka asetetaan kattilan eli padan reunalle. Niillä kepeillä vyyhdit sitte käännetään nopeasti keitettäessä. Jos ei ole väliä tuleeko langat vähän vaaleammiksi eli tummemmiksi voi laskea langat värikattilaan ja siellä niitäsitten kepillä kohennella. Langat eivät saa kiehua kovalla tulella, jotta eivät tulisi hauraiksi.
Muuten tulee lankoja värjättäessä tarkkaan seurata käyttöohjeita. Ja jos värjää mallin mukaan, niin voi lankojen kiehuessa ottaa pätkän, huuhtoa se nopeasti ja kuivata se ja verrata malliin. Silloin voi määritellä tuleeko lankojen vielä kiehua, sillä värin keittämisaika riippuu paljon itse kasviaineiden värivoimasta. Jos se on tuore, kuiva tahi jo kauan sitte koottu, niin antaa se aivan eri voimaista väriä. Paras on värjätä samanväriset samaan työhön tulevat langat yhtäaikaa, nillä harvoin värjätessä saa aivan samaa värilajia.
Keitettyä huuhditaan langat, jokunen laji voi jäädä väriveteen jäähtymään ja väännettyä asetetaan joko lämpimään huoneesen eli mieluimmin ulos varjoon kuivamaan. On tärkeätä huomata että värjätyt langat eivät koskaan saa kuivua päiväpaisteessa. Jos langoista kuivuttuakin vielä lähtee väriä voi ne huuhtoa kuumassa väkevässä katajavedessä.
Kotimaiset väriaineet kuten puunkuoret, kävyt, lehvät y. m. joilla värjätään, liotetaan kylmässä vedessä 1 päivää ennen käyttämistä sekä keitetään sitte tässä vedessä noin 4 tuntia. Kasvijätteet otetaan kattilasta ja huuhditaan tarkkaan vielä kylmällä vedellä, jotta niistä kaikki väriaine lähtee. Kasvit on koottava kehittyneinä ja tuoreina. Voi kyllä, ellei heti voi värjätä, kasviaineita jonkunaikaa säilyttää muutamia päiviä kylmässä eli kosteassa paikassa. Kasviaineet, joita talvitarpeiksi kootaan, kuivataan vinteillä y. m. mahdollisen hyvin ja säilytetään ne kuivattuina säkeissä kuivalla paikalla. Tässäkin on muistettava että niitä ei saa kuivata päiväpaisteessa eikä uunissa. Kuori kootaan silloin kuin se parhaiten irtautuu puusta, ja pitää sen olla sammaltumattomista puista, vaan ei juuri kovin nuorista oksista. Niitä voi käyttää sekä kuivattuina että tuoreina.
Lehdet kootaan mieluimmin juhannuksen aikaan. Myöhemmin kootuista lehdistä tulee heikompi väri. Kukkivat kasvit otetaan ennen niiden kukkimista.
Ulkomaisista väriaineista käytetään muutamia kasvilajeja, kuten Indihoa, Santelia, Krappia y. m. sekä koschenilliä, joka on eräs pieni eläin kaktuskasveissa. Tästä eläimestä saa kuivattuna punaista väriainetta (karmiinia).
Karvalankoja voi värjätä aivan samojen ohjeiden mukaan kuin villalankoja, ainoastaan on huomattava se seikka, että niihin menee vähemmin väriainetta.
Sitäpaitsi ei karvalankoja tarvitse purettaa, koska karvalangat ovat tavallisesti nahkurilla jo olleet kalkkiliuoksessa.
Lähempiä käyttöohjeita saa Suom. Käsit. Yst. laatimasta Neuvoja Kotivärjäykseen kasviaineilla.
Pencil Writes Three Colors
Popular Mechanics, huhtikuu 1935
Serving the purpose of three pencils, an automatic pencil made of pyralin writes three colors. A flick of a thumb button changes from one color lead to another. Three separate leads are contained in the normal size barrel. Each lead is supported to the writing point.
Serving the purpose of three pencils, an automatic pencil made of pyralin writes three colors. A flick of a thumb button changes from one color lead to another. Three separate leads are contained in the normal size barrel. Each lead is supported to the writing point.
How to Make Wax Crayons
Popular Mechanics, huhtikuu 1935
A good grade of wax marking crayons may be made in any desired color by melting together tallow, 90 parts, rosin, 2½ parts and rosin soap, 1 part. While the mixture is molten, the coloring pigment should be stirred in. Almost any dry color may be used, such as prussian blue, red iron oxide or chrome yellow. The colored mixture is then poured into molds, which may be short glass tubes. Wax drawing crayons may be cast from a composition made by melting together hard castile soap, 8 parts, beeswax crude, 6 parts, and crude spermaceti wax, 2 3/4 parts. While hot, carbon black 1½ parts, burnt umber, ½ part and prussian blue, ½ part, all by weight, are added and worked into the waxes until an even consistency is produced. The finished material is then poured into hot molds and cooled quickly by plunging into cold water.
A good grade of wax marking crayons may be made in any desired color by melting together tallow, 90 parts, rosin, 2½ parts and rosin soap, 1 part. While the mixture is molten, the coloring pigment should be stirred in. Almost any dry color may be used, such as prussian blue, red iron oxide or chrome yellow. The colored mixture is then poured into molds, which may be short glass tubes. Wax drawing crayons may be cast from a composition made by melting together hard castile soap, 8 parts, beeswax crude, 6 parts, and crude spermaceti wax, 2 3/4 parts. While hot, carbon black 1½ parts, burnt umber, ½ part and prussian blue, ½ part, all by weight, are added and worked into the waxes until an even consistency is produced. The finished material is then poured into hot molds and cooled quickly by plunging into cold water.
8.3.10
Katsaus maailman menoon. Joensuun wapaaehtoisen palosammutuskunnan juhla.
Karjalatar 103, 9.9.1899
[---]
Kuopiossa ilmestymän Uuden-Sawon tänne saapunut wiime numero sisältää seuraawan makupalan: "Wirallisesti wahwistetut liput" tuntee ainakin Joensuun wapaaehtoinen palokunta. Wiime sunnuntaina wiettäessään wuosijuhlaansa oli se warsin runsaasti ja oikein "wirallisesti wahwistetuilla lipuilla" koristanut juhlailupaikkansa. Poltettiinpa illantullen melkoinen ilotulituskin ja siinäkin näkyiwät yksinomaan "wiralliset wärit", useimmiten semmoiset, joita joskus täälläkin kuljeksiwilla paidoissa näkee.
Pois murehet ja huolet näkyiwät haihtuneen tuossa lippuliuhkeessa. Ja jos tätä annettua esimerkkiä waan ruwettanee muuallakin seuraamaan, niin kohtapa wärimuutos
aiwan ihoa myöten tulee tapahtumaan. Ken elää, se näkee; lausuu kirjeenwaihtajamme."
Tuli ja leimaus, ajattelin tätä lukiessani, Uudella Sawollahan näkyy olewan kaupungissamme warsinainen kirjeenwaihtaja ja wieläpä semmoinen, joka tarkoin tuntee ja tietää minkälaiset liput tulee olla. Minä taas en tunne lippuja juuri ollenkaan, sen kumminkin tiedän, että Kiinan lipussa on sen suuren lohikäärmeen kuwa ja Amerikan lipussa on paljon tähtiä. Muut liput ne owat aiwan sekasin minun muistissani, eriwärisiä ne näkywät useammat olewan ja puansta näkyy olewan useammissa. Norjassa kuuluu olewan niin kutsuttuja puhtaita lippuja, en ole niitä nähnyt, mutta luulen että ne owat aiwan walkeita. Sehän on puhtauden wäri.
Eilisen päiwää juoksin ympäri kaupunkia tawatakseni Uuden Sawon kirjeenwaihtajaa kysyäkseni häneltä, mitä hän oikein tuolla lippu-uutisellaan tarkoittaa, waan ei kukaan tietänyt, missä hän asuu. Pyydän häntä ystäwällisesti tulemaan minun luokseni asiatansa tarkemmin selwittääksensä.
Muuten luulen että hänen uutisensa ei ole lähtenyt hywästä sydämmestä. Luulen että sillä tahdotaan jollakin tawoin alentaa Joensuun wapaaehtoista palosammutuskuntaa ja siis minuakin, sillä minäkin olen palokunnan jäsen.
Olin minäkin siellä juhlassa, en kuitenkaan huomannut mitään erityistä, ne liput, jotka puistoa ja soittolawaa koristiwat, owat jo monta wuotta olleet kaupungissamme ja oliwat ne käytännössä silloinkin kun täällä wietettiin Suomen yleinen raittius-kokous eikä ne silloin mitään pahennusta herättäneet.
Ei ilotulituskaan näy kirjeenwaihtajaa miellyttäneen. "Siinäkin näkyiwät wiralliset wärit useimmiten semmoiset, joita täälläkin kuljeksiwilla paidoissa näkee".
Ensiksi tahdon ilmoittaa että puistossa paloi eriwärisiä paperilyhtyjä, joita tawallisesti kaikkialla maailmassa käytetään, kun ei ole waraa hankkia lasisia palloja. Oli niitä lyhtyjä keltaisia, walkoisia, punaisia ja monen wärisiä.
Mitkähän ne wärit owat joita kirjeenwaihtaja ei suwaitse? Onko keltainen wäri hänelle wastoin mielinen? Kenties. Wai pelkääkö hän punasta kuten äkäiset härät? Hywin mahdollista. Näyttää siltä niinkuin hän kaikkein enimmin kammoisi niitä wärejä, "joita tawataan täällä kuljeksiwien paidoissa".
Rakas lukija! Kutka owat nuo täällä kuljeksiwat? Kyselin eilen monelta wanhalta kaupunkilaiselta, mutta ei kukaan woinut mulle sanoa keitä ne owat nuo "täällä kuljeksiwat". Tarkoittaako kirjeenwaihtaja mustalaisia, kenties noita Serbian mustalaisia, jotka täällä heinäkuussa majailiwat? Sitä en tiedä. Wai tarkoittaako hän sitä että me olemme kaikki täällä waeltajia ja matkamiehiä.
Toiseksi on omiansa herättämään huomiota se seikka, että kirjeenwaihtaja tuntee ja tietää minkälaiset paidat ihmisillä on. Mikäli minä tunnen asiaa näkee täällä ihmisiä tawallisissa waatteissa ja pukimissa eikä minulla ole wähintäkään aawistusta minkälaiset paidat niillä on. Walkeata näkyy wain kaulassa ja rinnalta pilkoittaawan ja kesällä oli muutamilla pehmeät kirjawat rinnukset ja kaulukset. Kuitenkin kesällä kulki kerran kaupungin läpi muutamia polkupyöräurheilijoita ja niillä oli päällä walkean ja sinisen juowikkaat urheilupaidat ja niitä se kirjeenwaihtaja luultawasti tarkoittaa. Nehän oliwat kuljeksiwia ja niillähän oli wärilliset paidat. Mutta miksi wihaa kirjeenwaihtaja näitä wiattomia wärejä? Jollei tätä selitystä hywäksytä, jää yhä edelleen arwoitukseksi miten Uuden Sawon kirjeenwaihtaja on tilaisuudessa tekemään niin tarkkoja hawaintoja paitojen suhteen, että hän tietää mitkä wäritkin niissä tawallisesti tawataan.
Wielä olisi tarkastettawa mitä tarkoittaa kirjeenwaihtaja "wärin muutoksella ihoa myöten", jonka hän arwelee kohta tapahtuwan. Se kuuluu hywin pöyristyttäwältä, mutta en jouda nyt tällä kertaa sitä tarkemmin selwittelemään.
[---]
- Wipusen poika -
[---]
Kuopiossa ilmestymän Uuden-Sawon tänne saapunut wiime numero sisältää seuraawan makupalan: "Wirallisesti wahwistetut liput" tuntee ainakin Joensuun wapaaehtoinen palokunta. Wiime sunnuntaina wiettäessään wuosijuhlaansa oli se warsin runsaasti ja oikein "wirallisesti wahwistetuilla lipuilla" koristanut juhlailupaikkansa. Poltettiinpa illantullen melkoinen ilotulituskin ja siinäkin näkyiwät yksinomaan "wiralliset wärit", useimmiten semmoiset, joita joskus täälläkin kuljeksiwilla paidoissa näkee.
Pois murehet ja huolet näkyiwät haihtuneen tuossa lippuliuhkeessa. Ja jos tätä annettua esimerkkiä waan ruwettanee muuallakin seuraamaan, niin kohtapa wärimuutos
aiwan ihoa myöten tulee tapahtumaan. Ken elää, se näkee; lausuu kirjeenwaihtajamme."
Tuli ja leimaus, ajattelin tätä lukiessani, Uudella Sawollahan näkyy olewan kaupungissamme warsinainen kirjeenwaihtaja ja wieläpä semmoinen, joka tarkoin tuntee ja tietää minkälaiset liput tulee olla. Minä taas en tunne lippuja juuri ollenkaan, sen kumminkin tiedän, että Kiinan lipussa on sen suuren lohikäärmeen kuwa ja Amerikan lipussa on paljon tähtiä. Muut liput ne owat aiwan sekasin minun muistissani, eriwärisiä ne näkywät useammat olewan ja puansta näkyy olewan useammissa. Norjassa kuuluu olewan niin kutsuttuja puhtaita lippuja, en ole niitä nähnyt, mutta luulen että ne owat aiwan walkeita. Sehän on puhtauden wäri.
Eilisen päiwää juoksin ympäri kaupunkia tawatakseni Uuden Sawon kirjeenwaihtajaa kysyäkseni häneltä, mitä hän oikein tuolla lippu-uutisellaan tarkoittaa, waan ei kukaan tietänyt, missä hän asuu. Pyydän häntä ystäwällisesti tulemaan minun luokseni asiatansa tarkemmin selwittääksensä.
Muuten luulen että hänen uutisensa ei ole lähtenyt hywästä sydämmestä. Luulen että sillä tahdotaan jollakin tawoin alentaa Joensuun wapaaehtoista palosammutuskuntaa ja siis minuakin, sillä minäkin olen palokunnan jäsen.
Olin minäkin siellä juhlassa, en kuitenkaan huomannut mitään erityistä, ne liput, jotka puistoa ja soittolawaa koristiwat, owat jo monta wuotta olleet kaupungissamme ja oliwat ne käytännössä silloinkin kun täällä wietettiin Suomen yleinen raittius-kokous eikä ne silloin mitään pahennusta herättäneet.
Ei ilotulituskaan näy kirjeenwaihtajaa miellyttäneen. "Siinäkin näkyiwät wiralliset wärit useimmiten semmoiset, joita täälläkin kuljeksiwilla paidoissa näkee".
Ensiksi tahdon ilmoittaa että puistossa paloi eriwärisiä paperilyhtyjä, joita tawallisesti kaikkialla maailmassa käytetään, kun ei ole waraa hankkia lasisia palloja. Oli niitä lyhtyjä keltaisia, walkoisia, punaisia ja monen wärisiä.
Mitkähän ne wärit owat joita kirjeenwaihtaja ei suwaitse? Onko keltainen wäri hänelle wastoin mielinen? Kenties. Wai pelkääkö hän punasta kuten äkäiset härät? Hywin mahdollista. Näyttää siltä niinkuin hän kaikkein enimmin kammoisi niitä wärejä, "joita tawataan täällä kuljeksiwien paidoissa".
Rakas lukija! Kutka owat nuo täällä kuljeksiwat? Kyselin eilen monelta wanhalta kaupunkilaiselta, mutta ei kukaan woinut mulle sanoa keitä ne owat nuo "täällä kuljeksiwat". Tarkoittaako kirjeenwaihtaja mustalaisia, kenties noita Serbian mustalaisia, jotka täällä heinäkuussa majailiwat? Sitä en tiedä. Wai tarkoittaako hän sitä että me olemme kaikki täällä waeltajia ja matkamiehiä.
Toiseksi on omiansa herättämään huomiota se seikka, että kirjeenwaihtaja tuntee ja tietää minkälaiset paidat ihmisillä on. Mikäli minä tunnen asiaa näkee täällä ihmisiä tawallisissa waatteissa ja pukimissa eikä minulla ole wähintäkään aawistusta minkälaiset paidat niillä on. Walkeata näkyy wain kaulassa ja rinnalta pilkoittaawan ja kesällä oli muutamilla pehmeät kirjawat rinnukset ja kaulukset. Kuitenkin kesällä kulki kerran kaupungin läpi muutamia polkupyöräurheilijoita ja niillä oli päällä walkean ja sinisen juowikkaat urheilupaidat ja niitä se kirjeenwaihtaja luultawasti tarkoittaa. Nehän oliwat kuljeksiwia ja niillähän oli wärilliset paidat. Mutta miksi wihaa kirjeenwaihtaja näitä wiattomia wärejä? Jollei tätä selitystä hywäksytä, jää yhä edelleen arwoitukseksi miten Uuden Sawon kirjeenwaihtaja on tilaisuudessa tekemään niin tarkkoja hawaintoja paitojen suhteen, että hän tietää mitkä wäritkin niissä tawallisesti tawataan.
Wielä olisi tarkastettawa mitä tarkoittaa kirjeenwaihtaja "wärin muutoksella ihoa myöten", jonka hän arwelee kohta tapahtuwan. Se kuuluu hywin pöyristyttäwältä, mutta en jouda nyt tällä kertaa sitä tarkemmin selwittelemään.
[---]
- Wipusen poika -
Brown: More Speed on Cutouts
Popular Mechanics, kesäkuu 1944
By Sam Brown
In producing novelty cutouts for profit, the owner of a small shop must make every possible use of production methods in order to turn out work that can be sold at competitive prices.
Pad sawing: This is a popular method of producing several figures at one time by the familiar method of making a pad of the work. Band-saw work should be about 3 in. thick, and scrollsaw about 1½ in. Even where the machine has greater capacity, there is little to gain in exceeding these thicknesses. Simplest method od assempling the pad is by nailing, locating the nails in the portions of the work what will be waste stock as in Fig. 7. [PUUTTUU] Two or more figures on a panel as in Fig. 3 [PUUTTUU] often saves lumber, and in all cases eliminates some cutting of the original blank. For long-run work, many operators prefer to use holding jigs. The box jig in Figs. 1 and 2 [PUUTTUU] is ideal for work that has at least one uncut square corner. The clamp jig, Figs 4 and 6 [PUUTTUU] can be used for any figure having one uncut edge. In making jigs of this kind, the base block is left in-the-square, being cut to shape at the same time as the first load of panels. Turning holes, Fig. 5 [PUUTTUU], are very helpful. A check should be made to see that both drill and band-saw blade are aligned square before starting work.
Block printing with linoleum or wood block is an excellent method of marking black detail lines. Transfer can be made by hammering or pressure
Block printing: Photos in Figs. 8 to 13 [VIIMEISIN PUUTTUU] inclusive picture good production methods of finishing cutouts by dip-staining of edges and block printing of detail. Fig. 8 shows the initial operation after band-sawing, the work being dipped into water stain of the same color as the paint to be used on the faces of figures. The purpose of staining is to color the edges, after which the work is face-sanded to remove any raised fibers in preparation for spray application of lacquer on the face, Fig. 9. Note the use of square sticks with fine-pointed nails as a means of holding the cutout. This is one of the simplest and best methods of handlin all types of small cutouts. Black detail on the face of the figure is put in with a linoleum or wood block. The design can be transferred by hammering as in Fig. 12 if the figure is small, otherwise some simple form of pressure such as a clamp or vise should be used.
The inking pad is a piece of 1/8-in felt glued to a wood block. Regular block-printing ink is ideal for maximum blackness but is very slow drying. Colors in japan give slightly fainter impressions but are fast-drying and quite satisfactory. In either case, the color is used just as it comes from the tube, being rolled out on the pad with a roller or stick. Fig. 13 [PUUTTUU] whos the finished cutout, painted thumbtacks being used for eyes. The body of the figure is not a cutout, strictly speaking, but is formed with the use of a pattern on the shaper. Note again the use of stain as a means of coloring the edges of the cat's face. This methos is fast anc clean, and can be used to advantage on any type of cutout. The slight grain raising of water stain is not objectionable since it helps to conceal band-saw marks, but non-grain-raising stain can be used if desired.
The perforated pattern is ideal for transferring outline or pattern for hand painting. Best medium for the pattern is celluloid obtained from old photo negatives. The paint should be thick color in japan, applied sparingly
Perforated patterns: The perforated pattern is an excellent method of transferring designs for hand painting. Best material for the pattern is thin celluloid such as old photograph negatives. The original pencil drawing of the design is rubber-cemented to the celluloid, after which the design is perforated by drilling with a 1/32 to 1/15-in. drill as in Fig. 15. The finished pattern is shown in Fig. 16. In use, the pattern is held firmly against the work while color is applied by means of a toothbrush, as indicated in Fig. 14. Use colors in japan at tube thickness and keep the brush almost dry. Do not attempt to use any type of paint or ink that is the least bit fluid. Advantages of this method are that the pattern need not be cleaned and can be used continuously for as many times as desired, it can be turned over if opposite side cutout is to be painted, and the design takes equally well on coated or bare wood panels.
Wax-paper transfers are used for transferring designs. The paper lifts the design from a pencil sketch and is then rubbed onto work
Waxed-paper transfers: This is a good method of transferring the design for short-run work. The paper used can be made by brush-coating with hot paraffin wax, but is best purchased as it is inexpensive. This paper is not the familiar waxed wrapping paper, but is a special product made for transferring designs. A pencil sketch is made first, using a soft lead pencil. The wax paper is rubbed over this, Fig. 17, and then is stripped off as in Fig. 18. Rubbing the waxed paper over the work, Fig. 19, completes the transfer. This method gives eight to ten clean impressions on smooth coated stock. The design takes poorly on bare wood, hence painting of the panels before cutting is essential.
Hand painting. Many cutout designs consist only of a solid base color with black lines for detail. On short-run work it is advantageous to freehand the detail. Transfer methods previously described can be used for guide lines, and the painting medium should be colors in oil or japan.
Silk-screen stencils offer the best production method of painting. Sample illustrated shows paint-filled screen
Silk-screen stencils: Best of all production methods of painting is the silk screen stencil. This method is described fully in the 1940 issue of Popular Mechanics Shop Notes. Briefly, the stencil material is a silk cloth, running about 140-mesh per inch. The silk is tacked drum tight on a wooden grame, and the areas which are not to print are blocked out with a special filler. Fig. 22 pictures the set-up for stenciling the letter "E," the area around the letter being blocked out. Paint is poured on the screen and wiped from one end to the other by means of a rubber squegee. The action of th esqueegee forces paint through the silk and thus transfers the design. A tpical set-up with silk screen stencil is shown in Fig. 23. The edges and face of work are first painted black, as in Figs. 20 and 21, and the stencil is blocked off to leave a black margin around the cutout. The silk screen method allows many manipulations, multiple color work, photographic screens, etc. Every serious worker in cutouts should give this method a trial.
Metal stencils
can be cut out of the scrollsaw and are excellent for general work. Magnet method of holding shown at right is used extensively in industrial painting cutouts
Metal stencils: Metal stencils are widely used on both short and long runs. The stencil can be made from tin, brass, zinc or other metal about .012 in. thick (28-gage). Cutting of the stencil is done on scrollsaw, with the metal held between plywood sheets. It is preferable to have two or more stencils of the same figure. Simplest working method is a wooden frame into which the stencil fits, Fig. 24, the work being held by hand behind the stencil, which will run seven or eight pieces before the paint starts to pile up. The dirty stencil then is thrown into a pan of lacquer thinner, and the second stencil is picked out of the thinner, brushed off and blown dry ready for use. One of the neatest methods of holding the metal stencil is shown in Fig. 26 and employed a magnet. The wood cutout is placed against the magnet and is topped by the stencil. The magnet then holds everything in place for painting. Any ordinary magnet of fair size will hold small cutouts of ¼-in. plywood. For larger or thicker work, several magnets can be grouped together. "Magnetic chucks" of this kind, both plain and electro, can be purchased in any size and have the advantage of increased power plus off-on switch control. Whatever method is used, the metal stencil should have tabs or other locating device to position the work, Fig. 25. Obviously, if the magnet method is used, the stencil must be tin, iron or steel and not brass, copper or zinc.
Gummed-paper stencils
provide perfect adhension to the work and are excellent for use on long- or short-run jobs
Paper stencils: Plain paper stencils in several variations have many uses in cut-out painting. If paper stencils are used, it is advantageous to cut fifty or more stencils at one time by clinch-nailing the paper sheets between plywood as in Fig. 29. Tightly nailed and cut on the scrollsaw, edges will be sharp and clean. Used stencils are thrown away when dirty. The principal disadvantage of the paper stencil is the difficulty encountered in getting it to lie flat on the work. Unless firmly held, the spray gun blast will blow under the edges of the stencil. This can be minimized by using a round spray, reducing air pressure to minimum, and directing gun at right angles to the work at all times. "Blow-unders" can be eliminated entirely by using some method to actually "glue" the stencil to the work. The wax paper previously mentioned is fairly good; plain paper with dabs of wax, rubber cement or other sticky substance often can be used, or the stencil can often be held down by small weights or pins. Best of all is duplex stencil paper. This is a rubber-coated paper with strip-off backing. To use the stencil, simply strip off the backing and roll the stencil onto the work, as shown in Fig. 30. This paper has an advantage in that it leaves no deposit whatever on the work. The same stencil can be used for several pieces of work. The complete painting schedule for the figure used to illustrate stenciling methods is shown in Figs.27 and 28. The work is first sprayed with white undercoat and then white lacquer enamel, after which the head of the figure is painted red by dipping, Fig.28, using a synthetic to avoid stripping the lacquer undercoat. The work is now ready for the black detail, using any of the stencil methods described. If both sides of the figure are to be painted by using gummed stencils, one half of the pad should be turned over when cutting so that the cement will be on the proper side when the stencil is reversed.
Woods to use: On all cutout work avoid fir, cypress, hemlock, yellow pine or any wood with alternate soft and hard grain. Such woods "washboard" badly in bandsawing and have a poor face grain for painting. Excellent cutout woods include poplar, white pine and basswood, poplar being the best and also inexpensive, using fifth grafe material (stained saps) which is quite satisfactory for paint. Plywood is excellent for all figures. Unselected red gum is a much better wood for painting, both esge and face, than commonly used fir. If plywood figures are to be used outdoors, the plywood must be waterproof variety. Plywood panels already coated can be obtained and often show an actual savings in paint costs.
By Sam Brown
In producing novelty cutouts for profit, the owner of a small shop must make every possible use of production methods in order to turn out work that can be sold at competitive prices.
Pad sawing: This is a popular method of producing several figures at one time by the familiar method of making a pad of the work. Band-saw work should be about 3 in. thick, and scrollsaw about 1½ in. Even where the machine has greater capacity, there is little to gain in exceeding these thicknesses. Simplest method od assempling the pad is by nailing, locating the nails in the portions of the work what will be waste stock as in Fig. 7. [PUUTTUU] Two or more figures on a panel as in Fig. 3 [PUUTTUU] often saves lumber, and in all cases eliminates some cutting of the original blank. For long-run work, many operators prefer to use holding jigs. The box jig in Figs. 1 and 2 [PUUTTUU] is ideal for work that has at least one uncut square corner. The clamp jig, Figs 4 and 6 [PUUTTUU] can be used for any figure having one uncut edge. In making jigs of this kind, the base block is left in-the-square, being cut to shape at the same time as the first load of panels. Turning holes, Fig. 5 [PUUTTUU], are very helpful. A check should be made to see that both drill and band-saw blade are aligned square before starting work.
Block printing with linoleum or wood block is an excellent method of marking black detail lines. Transfer can be made by hammering or pressure
Block printing: Photos in Figs. 8 to 13 [VIIMEISIN PUUTTUU] inclusive picture good production methods of finishing cutouts by dip-staining of edges and block printing of detail. Fig. 8 shows the initial operation after band-sawing, the work being dipped into water stain of the same color as the paint to be used on the faces of figures. The purpose of staining is to color the edges, after which the work is face-sanded to remove any raised fibers in preparation for spray application of lacquer on the face, Fig. 9. Note the use of square sticks with fine-pointed nails as a means of holding the cutout. This is one of the simplest and best methods of handlin all types of small cutouts. Black detail on the face of the figure is put in with a linoleum or wood block. The design can be transferred by hammering as in Fig. 12 if the figure is small, otherwise some simple form of pressure such as a clamp or vise should be used.
The inking pad is a piece of 1/8-in felt glued to a wood block. Regular block-printing ink is ideal for maximum blackness but is very slow drying. Colors in japan give slightly fainter impressions but are fast-drying and quite satisfactory. In either case, the color is used just as it comes from the tube, being rolled out on the pad with a roller or stick. Fig. 13 [PUUTTUU] whos the finished cutout, painted thumbtacks being used for eyes. The body of the figure is not a cutout, strictly speaking, but is formed with the use of a pattern on the shaper. Note again the use of stain as a means of coloring the edges of the cat's face. This methos is fast anc clean, and can be used to advantage on any type of cutout. The slight grain raising of water stain is not objectionable since it helps to conceal band-saw marks, but non-grain-raising stain can be used if desired.
The perforated pattern is ideal for transferring outline or pattern for hand painting. Best medium for the pattern is celluloid obtained from old photo negatives. The paint should be thick color in japan, applied sparingly
Perforated patterns: The perforated pattern is an excellent method of transferring designs for hand painting. Best material for the pattern is thin celluloid such as old photograph negatives. The original pencil drawing of the design is rubber-cemented to the celluloid, after which the design is perforated by drilling with a 1/32 to 1/15-in. drill as in Fig. 15. The finished pattern is shown in Fig. 16. In use, the pattern is held firmly against the work while color is applied by means of a toothbrush, as indicated in Fig. 14. Use colors in japan at tube thickness and keep the brush almost dry. Do not attempt to use any type of paint or ink that is the least bit fluid. Advantages of this method are that the pattern need not be cleaned and can be used continuously for as many times as desired, it can be turned over if opposite side cutout is to be painted, and the design takes equally well on coated or bare wood panels.
Wax-paper transfers are used for transferring designs. The paper lifts the design from a pencil sketch and is then rubbed onto work
Waxed-paper transfers: This is a good method of transferring the design for short-run work. The paper used can be made by brush-coating with hot paraffin wax, but is best purchased as it is inexpensive. This paper is not the familiar waxed wrapping paper, but is a special product made for transferring designs. A pencil sketch is made first, using a soft lead pencil. The wax paper is rubbed over this, Fig. 17, and then is stripped off as in Fig. 18. Rubbing the waxed paper over the work, Fig. 19, completes the transfer. This method gives eight to ten clean impressions on smooth coated stock. The design takes poorly on bare wood, hence painting of the panels before cutting is essential.
Hand painting. Many cutout designs consist only of a solid base color with black lines for detail. On short-run work it is advantageous to freehand the detail. Transfer methods previously described can be used for guide lines, and the painting medium should be colors in oil or japan.
Silk-screen stencils offer the best production method of painting. Sample illustrated shows paint-filled screen
Silk-screen stencils: Best of all production methods of painting is the silk screen stencil. This method is described fully in the 1940 issue of Popular Mechanics Shop Notes. Briefly, the stencil material is a silk cloth, running about 140-mesh per inch. The silk is tacked drum tight on a wooden grame, and the areas which are not to print are blocked out with a special filler. Fig. 22 pictures the set-up for stenciling the letter "E," the area around the letter being blocked out. Paint is poured on the screen and wiped from one end to the other by means of a rubber squegee. The action of th esqueegee forces paint through the silk and thus transfers the design. A tpical set-up with silk screen stencil is shown in Fig. 23. The edges and face of work are first painted black, as in Figs. 20 and 21, and the stencil is blocked off to leave a black margin around the cutout. The silk screen method allows many manipulations, multiple color work, photographic screens, etc. Every serious worker in cutouts should give this method a trial.
Metal stencils
can be cut out of the scrollsaw and are excellent for general work. Magnet method of holding shown at right is used extensively in industrial painting cutouts
Metal stencils: Metal stencils are widely used on both short and long runs. The stencil can be made from tin, brass, zinc or other metal about .012 in. thick (28-gage). Cutting of the stencil is done on scrollsaw, with the metal held between plywood sheets. It is preferable to have two or more stencils of the same figure. Simplest working method is a wooden frame into which the stencil fits, Fig. 24, the work being held by hand behind the stencil, which will run seven or eight pieces before the paint starts to pile up. The dirty stencil then is thrown into a pan of lacquer thinner, and the second stencil is picked out of the thinner, brushed off and blown dry ready for use. One of the neatest methods of holding the metal stencil is shown in Fig. 26 and employed a magnet. The wood cutout is placed against the magnet and is topped by the stencil. The magnet then holds everything in place for painting. Any ordinary magnet of fair size will hold small cutouts of ¼-in. plywood. For larger or thicker work, several magnets can be grouped together. "Magnetic chucks" of this kind, both plain and electro, can be purchased in any size and have the advantage of increased power plus off-on switch control. Whatever method is used, the metal stencil should have tabs or other locating device to position the work, Fig. 25. Obviously, if the magnet method is used, the stencil must be tin, iron or steel and not brass, copper or zinc.
Gummed-paper stencils
provide perfect adhension to the work and are excellent for use on long- or short-run jobs
Paper stencils: Plain paper stencils in several variations have many uses in cut-out painting. If paper stencils are used, it is advantageous to cut fifty or more stencils at one time by clinch-nailing the paper sheets between plywood as in Fig. 29. Tightly nailed and cut on the scrollsaw, edges will be sharp and clean. Used stencils are thrown away when dirty. The principal disadvantage of the paper stencil is the difficulty encountered in getting it to lie flat on the work. Unless firmly held, the spray gun blast will blow under the edges of the stencil. This can be minimized by using a round spray, reducing air pressure to minimum, and directing gun at right angles to the work at all times. "Blow-unders" can be eliminated entirely by using some method to actually "glue" the stencil to the work. The wax paper previously mentioned is fairly good; plain paper with dabs of wax, rubber cement or other sticky substance often can be used, or the stencil can often be held down by small weights or pins. Best of all is duplex stencil paper. This is a rubber-coated paper with strip-off backing. To use the stencil, simply strip off the backing and roll the stencil onto the work, as shown in Fig. 30. This paper has an advantage in that it leaves no deposit whatever on the work. The same stencil can be used for several pieces of work. The complete painting schedule for the figure used to illustrate stenciling methods is shown in Figs.27 and 28. The work is first sprayed with white undercoat and then white lacquer enamel, after which the head of the figure is painted red by dipping, Fig.28, using a synthetic to avoid stripping the lacquer undercoat. The work is now ready for the black detail, using any of the stencil methods described. If both sides of the figure are to be painted by using gummed stencils, one half of the pad should be turned over when cutting so that the cement will be on the proper side when the stencil is reversed.
Woods to use: On all cutout work avoid fir, cypress, hemlock, yellow pine or any wood with alternate soft and hard grain. Such woods "washboard" badly in bandsawing and have a poor face grain for painting. Excellent cutout woods include poplar, white pine and basswood, poplar being the best and also inexpensive, using fifth grafe material (stained saps) which is quite satisfactory for paint. Plywood is excellent for all figures. Unselected red gum is a much better wood for painting, both esge and face, than commonly used fir. If plywood figures are to be used outdoors, the plywood must be waterproof variety. Plywood panels already coated can be obtained and often show an actual savings in paint costs.
Nykyaikainen nuorukainen. (Kasku.)
Aamulehti 184, 11.9.1904
Opettaja: Sininen on uskollisuuden wäri, wihreä on toiwon wäri ja punanen - minkä wäri se on?
Hannu: Punanen on sosialistien wäri.
Opettaja: Sininen on uskollisuuden wäri, wihreä on toiwon wäri ja punanen - minkä wäri se on?
Hannu: Punanen on sosialistien wäri.
A Color Index
Popular Science, helmikuu 1944
A Color Index that aids in finding colors that match or harmonize has been brought out by the Container Corporation of America, of Chicago. Each of the index's six bakelite containers holds 14 celluloid cards, on each of which are eight removable plastic chips of harmonizing color. The index also includes two work charts on which the chips can be placed, either in a circle or in a diamond-shaped arrangement, for purposes of comparison. The full range of the index is 680 colors.
A Color Index that aids in finding colors that match or harmonize has been brought out by the Container Corporation of America, of Chicago. Each of the index's six bakelite containers holds 14 celluloid cards, on each of which are eight removable plastic chips of harmonizing color. The index also includes two work charts on which the chips can be placed, either in a circle or in a diamond-shaped arrangement, for purposes of comparison. The full range of the index is 680 colors.