Aamulehti 153, 5.7.1901
W:n 1815 seuduissa, kun useimmat ensimäisistä wärjäreistä oliwat elossa ja toimessa, lienee wärjäysliike kaupungissa ollut jokseenkin wilkas ja kannattawa. Ammattihenki heidän keskuudessaan näyttää olleen korkealla. W. 1817 esittiwät wärjärit Lagerqwist, Sundgren ja Wessman, "kolme mestaria wärjärinprofessionissa", kuten he itseänsä nimittiwät, wi enempää eikä wähempää kuin säännöllisen hallioikeuden perustamista Tampereelle, jossa oikeidessa järjestysmies Tihlman olisi esimies. Kun woimassa olewa hallijärjestys w:lta 1770 sisälsi useita ammattikuntaisia pakkomääräyksiä ja rajoituksia, tuntuu warmalta, että hallioikeuttakin puuhattiin nyt ainoastaan mestarien omaksi suojaksi. Tällainen pyrkimys oli Tampereen perustuskirjasta poikkeawa. Kaupungin oikeus ei ryhtynyt asiaan, waan antoi pyytäjille osoituksen Suomen hallituskonseljin talousosastoon. Siihen erään asia sitten jäikin. Eipä kaupungin wärjäriprofessioonilta puttunut muitakaan yhteisiä puuhia. Jokainen uusi wärjäriksi pyrkiwä oli professioonin puolesta otettawa kuumasti wastaan. Olemme ennen maininneet, miten esim. w. 1813 kaksi wärjäriksi pyrkiwää palautettiin tyhjin toimin kaupungista, koska kaupungissa jo oli kolme täyttä mestaria wärjäyksessä ja lisä tuottaisi tuhon koko ammatille. Mutta ammattikunnan ei aina onnistunut suojella itseänsä yhtä hywin. Jo w. 1815 täytyi sen ottaa wastaan uusi tulokas, josta aluksi tuli paljon lewottomuutta leiriin.
Tulokas oli Eerik Haggren ja kuului hän Tampereella mainittawaan Haggrenin sukuun, jota jo jonkun aikaa oli kaupungissa edustanut tulokkaan weli nahkuri Georg Haggren.
W. 1814 anoi Eerok Haggren turkulaisen kisällikirjansa ja esittämäinsä takuitten nojalla päästä wärjäriksi, ylileikkaajaksi (öfwerstärare) ja werkatehtailijaksi Tampereelle. Tunnettu wärjäri kolminaisuus pani tietysti wastaan, sanoen kolmessa mestarissa jo olewan yltä kyllä Tampereelle ja useammassa wain tulewan entisten tai uuden häwiön, "erittäinkin nyt, kun wäriaineet owat tawattoman kalliit ja wärjäys maassa wallitsewan rahapulan wuoksi on melkoisesti wähentynyt". Kaupungin wanhimmat yhtyiwät noihin kolmeen ja huolimatta siitä että wiskaali Haltman keisarin nimessä waati Haggrenille pääsyä ja itse Tihlman katsoen hakijan kolmeen kisälliwuoteen, kaupungin perustuskirjan määräyksiin ja ympärillä olewan maakunnan laajuuteen, oli samaa mieltä wiskaalin kanssa, hylkäsi kaupunginoikeus Haggrenin hakemuksen, sillä hiukan lystillisellä lisä syyllä, että kaupungin kolme entistä wärjäriä owat perheellisiä, jota wastoin Haggren naimattomana woisi helpommin etsiä toimeentuloansa muualta.
Haggren ilmoitti walittawansa ja pyysi walitusajan kuluessa saada harjoittaa kaupungissa ammattiaan. Sekin ewättiin, mutta kisällinä luwattiin häntä suwaita. - Sellainen oli ajan käsitys työstä ja tuotannosta. Työtä kyllä oli, mutta se ei saanut tulla tekijänsä hywäksi.
W. 1815 tuli Haggren wärjäriksi Tampereella senaatin päätöksellä. Wielä seuraawana wuonna oliwat wanhat wärjärit haarniskoissa tulokasta wastaan. Häntä syytettiin siitä, että hän wei ansiot muilta mestareilta tyrkyttämällä itseään ja palkkawäellä ja ryypyillä wiettelemällä töitä maalaisilta. Syytetty otti asian ylemmältä kannalta suoden anteeksi wastustajilleen. Ja sula sowinto tuli pian wärjäriprofessioonissa wallalle. Haggren kiiruhti woimistamaan mestarinäytteensä, joka "katsantomestareiden" Lagerqwistin ja Sundgreenin silmäin alla suoritettiin ansiokkaasti. Niin tuli Haggren mestarien rulliin ja alkoi antaa uusille pyrkijöille samalla mitalla kuin itse oli saanut.
W. 1815 asettui Tampereelle wärjäri Fredrik Grek ja osti niinkuin olemme maininneet, wangan Spiringin tehtaan Wärjärikadun warrella. Saamme toisessa yhteydessä perehtyä lähemmin mieheen ja hänen suuremmoisiin werkatehdas hanneisiinsa. Tässä wain mainitsemme, että Fr. Grek alkoi liikkeensä loistolla ja päätti sen w. 1628 [painovirhe; luult. 1828] loistawalla konkurssilla. Mutta Grekin nimi jäi kunnialla elämään Tampereen wärjärikunnassa, missä sitä edustiwat Fr. Grekin pojat, wärjäri ja raatimies Johan Kasper Grek (wärjärioikeudet w:lta 1821) ja wärjäri Kaarle Fredrik Grek (tullut wärjäriksi 1831).
Coloriasto on väriaiheisten tekstien (ja kuvien) verkkoarkisto
(Archive for colour themed articles and images)
INDEX: coloriasto.net
Wanhat wärjärit. (osa 1)
Aamulehti 151, 3.7.1901
Tampereen elinkeinohistoriasta.
Aamulehdelle kirj. Väinö Wallin.
Wanhat wärjärit.
"Tehdasliikkeessä on pääasia kone, käsityöammatissa persoonallisuus"
Schädler.
Tampereen wanhoista käsityöläisammateista on wärjäysammatti ollut huomattawampia. Päättyneen wuosisadan ensi puoliskon kuluessa, siis ennen warsinaisen suurteollisuuden wauhtiin pääsyä kutoma- ja wärjäystyön alalla, oli Tampereen wärjärikunta kieltämättä kaupungin mahtawin käsityöläisluokka. Wärjäysammatti luettiin jo Ruotsin aikana teollisuudeksi, koska sitä saatettiin tehdasmaisesti harjoittaa ja siihen usein oli yhdistetty werankutomis-, ylileikkaus y. m. laitoksia. Tampereenkin wanhat suurwärjärit kantoiwat "fabriköörin" nimeä ja kunnioittiwat alinaan Turun hallioikeutta (tehdasoikeutta) lähimpänä esiwaltanaan. Myöhemmin Tampereen wärjärien "sosieteetti" seisoi omilla jaloillaan, waan oli lujasti yhteenliittynyt ja piti kunnialla yllä traditsiooneja ja ammatin arwoa. Wärjärien "professiooni" oli koko kaupungin käsityöläisluokan selkärankana, enin kuitenkin oman ammattinsa etujen wartijana. Wärjärit oliwat pysywästi edustetut kaupungin wanhimpain ja raatimiesten joukossa. Monet heistä oliwat waikuttawia kunnallismiehiä ja kaupunkilaisia. Useampi kuin yksi heistä kokosi ahkeralla toimella ja työllä werraten hywän omaisuuden, joka tuli käytetyksi elinkeinon hyödyksi.
Wärjärien mahti ja rikkaus oli kotoisin maakunnasta, sillä muita edellytyksiä warallisuuteen ei heillä woinut olla kuin wäkirikas maakunta, jossa kotikudonta wielä kukoisti ja jonka kotiteollisuus siis ylläpiti kaupungin wärjäritkin. Mutta koskien woima, jota Tampereen wärjärit ensimmäisinä yleisemmin käyttiwät palwelukseensa, houkutteli heitä yrittämään tehdasteollisuutta; toinen toisensa jälkeen heitä rupeaa werkatehtailijoiksi. Yritykset oliwat pieniä ja tehtaat meniwät kaikki myttyyn, mutta tämä wärjärien teollisuushenki kuitenkin osaltaan raiwasi tietä onnistuneemmalle tehdasteollisuudelle. Suurwärjärit joutuiwat tahtomattaan kuopankaiwajilsi itselleen; suurteollisuus nimittäin teki lopun wärjäyksen kukoistuksesta ja asetti sen kokonaan toiselle työpohjalle, muuttaen lopullisesti wärjäyksenkin tehdasteollisuudeksi tai polkien nuo kymmenet hywinwoiwat wärjärit nykyajan kituwiksi käsityöläisiksi.
1820-1830 lukuja woidaan ehkä pitää wärjäyksen kukoistuswuosina Tampereella. Wärjäri- ja werkatehtailijain lukumäärä teki:
w. 1815 5
w. 1825 10
w. 1835 13
w. 1845 10
w. 1855 15
w. 1865 11
Ylläolewta numeroita katsellessa on otettawa huomioon myöskin kaupungin kaikkien mestarien luku ja wäkiluwun kaswaminen. Wärjärien prosentti kaikkien käsityöläismestarien luwusta on 1820 ja 1830 luwuilla sangen suuri, usein noin 15% Wielä w. 1840 se oli 13,5%, w. 1845 11,4%, w. 1855 11%, mutta w. 1865 enään 8% jolloin myös wärjärien luku sinänsä on alentunut, waikka kaupungin wäkiluku on tawattomasti kaswanut. Tämä tietysti ei woi osottaa muuta kuin että wärjäys joko oli häwiämässä tai muuttumassa suurliikkeeksi.
Mutta meidän on nyt lähemmin kerrottawa wärjäyselinkeinon wanhemmasta kehityksestä ja wanhoista wärjärimestareista Tampereella.
Kaikkein ensimmäisistä pikkuwärjäreistä ei meillä ole tarkempia tietoja. Wanhimpia wärjäreitä lienee ollut Jonas Grönböd, joka w. 1789 omisti talon n:ro 35 (nyk. Kauppahalli Hämeenkadulla). jossa sittemminkin, puolen wuosisaadn ajat, asui wärjäreitä. Ensimmäisiä wärjäreitä oli myös eräs E[?]. F. Gart [Sart?], joka w. 1803 rutiköyhänä muutti Tampereelta Waasaan ja antoi jälkeenjääneille wärjäreille hywän aiheen peloitella uusia wärjäriksi pyrkijöitä Gartin kohtalolla.
Wanhempia ja huomattawimpia wärjäriliikkeitä Tampereelle oli Lagerqwistin wärjäysliike. Wärjärinkisälli Joh. Fred. Lagerqwist Turussa sai w. 1803 wärjärinoikeudet Tampereella. Hän näkyy alkaneen liikkeensä taloissa n:rot 54 ja 55 (nyk. Kauppa- ja Kuninkaankadun kulmassa, Lindellin talo), jossa Lagerqwistin wärjäämö oli monta kymmentä wuotta. Joh. Fredr. Lagerqwist näyttää olleen arwossa pidetty ja toimen mies. Jo w. 1804 walittiin hänet kaupungin wanhimpien joukkoon, jota arwoa w. 1815 seurasi raatimiehen wirka. W. 1806 sai hän Turussa mestarinkirjan, joka oli tärkeä seikka Tampereen wärjärien kesken, sillä heidän joukossaan oli melkein joka miehellä mestarinkirjat. W. 1818 antoi kaupunginoikeus hänestä hywän todistuksen: hän oli pahaperäiselle tontilleen rakentanut kaupunkia kaunistawan talon ja alkanut "werkatehtaan" perustamista. Tällä werkatehtaalla oli oma alkuhistoriansa. Lagerqwist oli jo Tampereelle tulleessaan ilmoittanut aikowansa perustaa werkatehtaan. "Werkatehtaalla" siihen aikaan ja Tampereen oloissa tarkoitettiin wain tawallista walkki- ja tamppimyllyä, jollaisen Lagerqwist rakensi yläkoskeen, mutta kun kaupunkiin oli tulut uudemmanaikainen werkatehtailija, joka alkoi ruweta werkaa kudottamaan ja myymään, tuli Lagerqwistillekin kiire saamaan werkatehtaan erioikeuksia, jotka hän saikin w. 1817. Mitään walmiimpaa ei tästä werkatehtaasta kuitenkaan tullut J. Fr. Lagerqwist kuoli w. 1823 ja jätti jäljeensä omaisuuden, joka arwioitiin 40,000 wiikin-welkariksiksi. Meidän aikamme raha-arwossa se olisi yli 100,000 markan omaisuus - kelpo summa pienen kaupungin wärjärin kokoomaksi. 7 lasta jäi jakamaan tätä perintöä. Pojista jatkoi Aleksander isän ammattia.
Toinen wanha kuuluisa wärjäri Tampereella oli Johan Petter Spiring, joka wuosisadan waihe aikoina oli Tampereen walistuneimpia ja waikuttawimpia asukkaita. Hänen toimistaan kaupungin wanhimpana ja kunnallismiehenä ei tässä ole tilaisuus kertoa. Hän näkyy tulleen Tampereelle 1790-luwulla, jolloin osti kauppias C. Lindqwistiltä talon n:o 7 (nyk. wiskaali Palanderin oma); hänelle kuului myöskin almepana torin takana olewa talo n:o 8. Näistä taloista tuli pitkäksi aikaa oikeita wärjäri pesiä; täältä kosken rantaan wiewää katua ruwettiin sen wuoksi sanomaan "Wärjärikaduksi" (Färgaregränden).
Spiringin wärjäyslaitoksella oliwat hywin kirjawat waiheet. Itse Spiring kuoli jo w. 1806, jättäen jälkeensä lesken, Ewa Kristiina Lindin, ja 6 lasta, joista wanhin oli 11 wuotias. Perje ei näytä joutuneen warattomiin oloihin, sillä Spiringin kaupungissa olewa omaisuus arwattiin useaan sataan pannoriksiin, jotapaitse Lielahden talo kuului perheelle. Leski meni pian uusiin naimisiin kisälli Antti Thegerstromin kanssa, joka Spiringin kuoltua oli wärjäämöä hoitanut. Thegerstromin murhasiwat wenäläiset w:n 1808 mellakoissa. Leski sai korwaukseksi pienen eläkkeen. Perhe joutui wähitellen hajalle ja häwisi pois Tampereelta. Poika Johan Petter Spiring muutti w. 1818 Turkuun ja mainitaan sitten kersanttina, näkyy wielä 1840-luwulla olleen wärjärin toimissa Pietarissa.Tampereella olewan wärjäämön osti w. 1810 rykmentinkirjuri August Anderssin, joka kuului kaupungin ylhäisöön ja teetti työt kisälli Otto Wessmannilla. W. 1817 muutti Wessman wärjäriksi Hämeenlinnaan. Wärjäämö oli jo w. 1815 joutunut uudelle omistajalle Fredrik Grekille, joka alkoi uuden aikakauden Wärjärikadulle.
Ensimäiseen historialliseen wärjäripolween kuului wielä Turusta tullut wärjärin sälli Mattias Sundgren, joka w. 1806 teki porwariwalansa Tampereella. Hänen wärjäämönsä oli talossa N:o 6 (nyk. Molinin apteekkitalo torin warrella), joka niinikään kauwan aikaa pysyi wärjärien hallussa. Sundgrenista, joka hankki täydet mestarinkirjat, ei paljon puhuta wärjärien aikakirjoissa. Hän nai Helena Sallmelinin Tampereelta ja kun hän lapsettomana w. 1819 kuoli arwioittiin hänen kiinteimmistönsä 1.800 ja wärjäyslaitoksensa 600 seteliruplaan. Se oli huomattawa omaisuus silloisissa käsityöläisoloissa ja sen saattoi päättää siitäkin, että Sundgrenin leskelle jo 1820 ilmestyi uusi kosija ja mies, maailman rannan renttu Jonas Nordman, ammatiltaan waskiseppä. Uusi mestari piteli yhtä huonosti rouwaansa kuin liikettäänkin. Jälkimäinen onneksi kuitenkin jo pian joutui kunnollisen miehen, helsinkiläisen Herman Liljelundin huostaan.
(Jatk.)
Tampereen elinkeinohistoriasta.
Aamulehdelle kirj. Väinö Wallin.
Wanhat wärjärit.
"Tehdasliikkeessä on pääasia kone, käsityöammatissa persoonallisuus"
Schädler.
Tampereen wanhoista käsityöläisammateista on wärjäysammatti ollut huomattawampia. Päättyneen wuosisadan ensi puoliskon kuluessa, siis ennen warsinaisen suurteollisuuden wauhtiin pääsyä kutoma- ja wärjäystyön alalla, oli Tampereen wärjärikunta kieltämättä kaupungin mahtawin käsityöläisluokka. Wärjäysammatti luettiin jo Ruotsin aikana teollisuudeksi, koska sitä saatettiin tehdasmaisesti harjoittaa ja siihen usein oli yhdistetty werankutomis-, ylileikkaus y. m. laitoksia. Tampereenkin wanhat suurwärjärit kantoiwat "fabriköörin" nimeä ja kunnioittiwat alinaan Turun hallioikeutta (tehdasoikeutta) lähimpänä esiwaltanaan. Myöhemmin Tampereen wärjärien "sosieteetti" seisoi omilla jaloillaan, waan oli lujasti yhteenliittynyt ja piti kunnialla yllä traditsiooneja ja ammatin arwoa. Wärjärien "professiooni" oli koko kaupungin käsityöläisluokan selkärankana, enin kuitenkin oman ammattinsa etujen wartijana. Wärjärit oliwat pysywästi edustetut kaupungin wanhimpain ja raatimiesten joukossa. Monet heistä oliwat waikuttawia kunnallismiehiä ja kaupunkilaisia. Useampi kuin yksi heistä kokosi ahkeralla toimella ja työllä werraten hywän omaisuuden, joka tuli käytetyksi elinkeinon hyödyksi.
Wärjärien mahti ja rikkaus oli kotoisin maakunnasta, sillä muita edellytyksiä warallisuuteen ei heillä woinut olla kuin wäkirikas maakunta, jossa kotikudonta wielä kukoisti ja jonka kotiteollisuus siis ylläpiti kaupungin wärjäritkin. Mutta koskien woima, jota Tampereen wärjärit ensimmäisinä yleisemmin käyttiwät palwelukseensa, houkutteli heitä yrittämään tehdasteollisuutta; toinen toisensa jälkeen heitä rupeaa werkatehtailijoiksi. Yritykset oliwat pieniä ja tehtaat meniwät kaikki myttyyn, mutta tämä wärjärien teollisuushenki kuitenkin osaltaan raiwasi tietä onnistuneemmalle tehdasteollisuudelle. Suurwärjärit joutuiwat tahtomattaan kuopankaiwajilsi itselleen; suurteollisuus nimittäin teki lopun wärjäyksen kukoistuksesta ja asetti sen kokonaan toiselle työpohjalle, muuttaen lopullisesti wärjäyksenkin tehdasteollisuudeksi tai polkien nuo kymmenet hywinwoiwat wärjärit nykyajan kituwiksi käsityöläisiksi.
1820-1830 lukuja woidaan ehkä pitää wärjäyksen kukoistuswuosina Tampereella. Wärjäri- ja werkatehtailijain lukumäärä teki:
w. 1815 5
w. 1825 10
w. 1835 13
w. 1845 10
w. 1855 15
w. 1865 11
Ylläolewta numeroita katsellessa on otettawa huomioon myöskin kaupungin kaikkien mestarien luku ja wäkiluwun kaswaminen. Wärjärien prosentti kaikkien käsityöläismestarien luwusta on 1820 ja 1830 luwuilla sangen suuri, usein noin 15% Wielä w. 1840 se oli 13,5%, w. 1845 11,4%, w. 1855 11%, mutta w. 1865 enään 8% jolloin myös wärjärien luku sinänsä on alentunut, waikka kaupungin wäkiluku on tawattomasti kaswanut. Tämä tietysti ei woi osottaa muuta kuin että wärjäys joko oli häwiämässä tai muuttumassa suurliikkeeksi.
Mutta meidän on nyt lähemmin kerrottawa wärjäyselinkeinon wanhemmasta kehityksestä ja wanhoista wärjärimestareista Tampereella.
Kaikkein ensimmäisistä pikkuwärjäreistä ei meillä ole tarkempia tietoja. Wanhimpia wärjäreitä lienee ollut Jonas Grönböd, joka w. 1789 omisti talon n:ro 35 (nyk. Kauppahalli Hämeenkadulla). jossa sittemminkin, puolen wuosisaadn ajat, asui wärjäreitä. Ensimmäisiä wärjäreitä oli myös eräs E[?]. F. Gart [Sart?], joka w. 1803 rutiköyhänä muutti Tampereelta Waasaan ja antoi jälkeenjääneille wärjäreille hywän aiheen peloitella uusia wärjäriksi pyrkijöitä Gartin kohtalolla.
Wanhempia ja huomattawimpia wärjäriliikkeitä Tampereelle oli Lagerqwistin wärjäysliike. Wärjärinkisälli Joh. Fred. Lagerqwist Turussa sai w. 1803 wärjärinoikeudet Tampereella. Hän näkyy alkaneen liikkeensä taloissa n:rot 54 ja 55 (nyk. Kauppa- ja Kuninkaankadun kulmassa, Lindellin talo), jossa Lagerqwistin wärjäämö oli monta kymmentä wuotta. Joh. Fredr. Lagerqwist näyttää olleen arwossa pidetty ja toimen mies. Jo w. 1804 walittiin hänet kaupungin wanhimpien joukkoon, jota arwoa w. 1815 seurasi raatimiehen wirka. W. 1806 sai hän Turussa mestarinkirjan, joka oli tärkeä seikka Tampereen wärjärien kesken, sillä heidän joukossaan oli melkein joka miehellä mestarinkirjat. W. 1818 antoi kaupunginoikeus hänestä hywän todistuksen: hän oli pahaperäiselle tontilleen rakentanut kaupunkia kaunistawan talon ja alkanut "werkatehtaan" perustamista. Tällä werkatehtaalla oli oma alkuhistoriansa. Lagerqwist oli jo Tampereelle tulleessaan ilmoittanut aikowansa perustaa werkatehtaan. "Werkatehtaalla" siihen aikaan ja Tampereen oloissa tarkoitettiin wain tawallista walkki- ja tamppimyllyä, jollaisen Lagerqwist rakensi yläkoskeen, mutta kun kaupunkiin oli tulut uudemmanaikainen werkatehtailija, joka alkoi ruweta werkaa kudottamaan ja myymään, tuli Lagerqwistillekin kiire saamaan werkatehtaan erioikeuksia, jotka hän saikin w. 1817. Mitään walmiimpaa ei tästä werkatehtaasta kuitenkaan tullut J. Fr. Lagerqwist kuoli w. 1823 ja jätti jäljeensä omaisuuden, joka arwioitiin 40,000 wiikin-welkariksiksi. Meidän aikamme raha-arwossa se olisi yli 100,000 markan omaisuus - kelpo summa pienen kaupungin wärjärin kokoomaksi. 7 lasta jäi jakamaan tätä perintöä. Pojista jatkoi Aleksander isän ammattia.
Toinen wanha kuuluisa wärjäri Tampereella oli Johan Petter Spiring, joka wuosisadan waihe aikoina oli Tampereen walistuneimpia ja waikuttawimpia asukkaita. Hänen toimistaan kaupungin wanhimpana ja kunnallismiehenä ei tässä ole tilaisuus kertoa. Hän näkyy tulleen Tampereelle 1790-luwulla, jolloin osti kauppias C. Lindqwistiltä talon n:o 7 (nyk. wiskaali Palanderin oma); hänelle kuului myöskin almepana torin takana olewa talo n:o 8. Näistä taloista tuli pitkäksi aikaa oikeita wärjäri pesiä; täältä kosken rantaan wiewää katua ruwettiin sen wuoksi sanomaan "Wärjärikaduksi" (Färgaregränden).
Spiringin wärjäyslaitoksella oliwat hywin kirjawat waiheet. Itse Spiring kuoli jo w. 1806, jättäen jälkeensä lesken, Ewa Kristiina Lindin, ja 6 lasta, joista wanhin oli 11 wuotias. Perje ei näytä joutuneen warattomiin oloihin, sillä Spiringin kaupungissa olewa omaisuus arwattiin useaan sataan pannoriksiin, jotapaitse Lielahden talo kuului perheelle. Leski meni pian uusiin naimisiin kisälli Antti Thegerstromin kanssa, joka Spiringin kuoltua oli wärjäämöä hoitanut. Thegerstromin murhasiwat wenäläiset w:n 1808 mellakoissa. Leski sai korwaukseksi pienen eläkkeen. Perhe joutui wähitellen hajalle ja häwisi pois Tampereelta. Poika Johan Petter Spiring muutti w. 1818 Turkuun ja mainitaan sitten kersanttina, näkyy wielä 1840-luwulla olleen wärjärin toimissa Pietarissa.Tampereella olewan wärjäämön osti w. 1810 rykmentinkirjuri August Anderssin, joka kuului kaupungin ylhäisöön ja teetti työt kisälli Otto Wessmannilla. W. 1817 muutti Wessman wärjäriksi Hämeenlinnaan. Wärjäämö oli jo w. 1815 joutunut uudelle omistajalle Fredrik Grekille, joka alkoi uuden aikakauden Wärjärikadulle.
Ensimäiseen historialliseen wärjäripolween kuului wielä Turusta tullut wärjärin sälli Mattias Sundgren, joka w. 1806 teki porwariwalansa Tampereella. Hänen wärjäämönsä oli talossa N:o 6 (nyk. Molinin apteekkitalo torin warrella), joka niinikään kauwan aikaa pysyi wärjärien hallussa. Sundgrenista, joka hankki täydet mestarinkirjat, ei paljon puhuta wärjärien aikakirjoissa. Hän nai Helena Sallmelinin Tampereelta ja kun hän lapsettomana w. 1819 kuoli arwioittiin hänen kiinteimmistönsä 1.800 ja wärjäyslaitoksensa 600 seteliruplaan. Se oli huomattawa omaisuus silloisissa käsityöläisoloissa ja sen saattoi päättää siitäkin, että Sundgrenin leskelle jo 1820 ilmestyi uusi kosija ja mies, maailman rannan renttu Jonas Nordman, ammatiltaan waskiseppä. Uusi mestari piteli yhtä huonosti rouwaansa kuin liikettäänkin. Jälkimäinen onneksi kuitenkin jo pian joutui kunnollisen miehen, helsinkiläisen Herman Liljelundin huostaan.
(Jatk.)
Appelsiinien wärjääminen.
Aamulehti 151, 3.7.1901
Sen johdosta, että Italiasta kuletetaan Saksaan suuret määrät n. s. weriappelsiineja eli oransseja ja koska semmoinen yleinen käsitys on wallalla, että ne owat jotenkin keinotekoisella tawalla wärjättyjä, owat useat etewät saksalaiset kemistit tutkineet appelsiinien wärjäämistä ja tullut siihen huomioon, että wäri ei tasaisesti hajaannu läpi koko appelsiinin. Appelsiinit, joista joku osa on tullut wärjätyksi, pahenewat pian. Luulo, että appelsiineja wärjättäisiin kastelemalla puiden juuria jollakin werenpunaisella nesteellä, on yhtä perätön.
Sen johdosta, että Italiasta kuletetaan Saksaan suuret määrät n. s. weriappelsiineja eli oransseja ja koska semmoinen yleinen käsitys on wallalla, että ne owat jotenkin keinotekoisella tawalla wärjättyjä, owat useat etewät saksalaiset kemistit tutkineet appelsiinien wärjäämistä ja tullut siihen huomioon, että wäri ei tasaisesti hajaannu läpi koko appelsiinin. Appelsiinit, joista joku osa on tullut wärjätyksi, pahenewat pian. Luulo, että appelsiineja wärjättäisiin kastelemalla puiden juuria jollakin werenpunaisella nesteellä, on yhtä perätön.
Color Wheel Changes Wording On Show-Window Sign
Popular Mechanics, kesäkuu 1945
Lettering on a show-window sign will alternately appear and disappear when light is projected on it through this simple color wheel. To produce this effect, a four-spoke wheel is cut from plywood or gardpressed board and grooved around the rim for a belt. Then pieces of red and green Cellophane are glued to it, with the colors alternating so that pieces of the same color are on opposite sides of the wheel. Next, the sign is lettered with red and green paint, alternating he color of the lines of letters. When the light shines through Cellophane of the same color as that of the lettering, this lettering will become invisible. But lettering painted in the other color will be plainly seen. The wheel is mounted on a support in front of a spotlight, and is rotated by a belt running over the pulley of a small motor. This should have a variable-speed control so that the wheel will rotate slowly enough to allow the lettering on the sign to be read easily.
Ken Murray, Baltimore, Md.
Lettering on a show-window sign will alternately appear and disappear when light is projected on it through this simple color wheel. To produce this effect, a four-spoke wheel is cut from plywood or gardpressed board and grooved around the rim for a belt. Then pieces of red and green Cellophane are glued to it, with the colors alternating so that pieces of the same color are on opposite sides of the wheel. Next, the sign is lettered with red and green paint, alternating he color of the lines of letters. When the light shines through Cellophane of the same color as that of the lettering, this lettering will become invisible. But lettering painted in the other color will be plainly seen. The wheel is mounted on a support in front of a spotlight, and is rotated by a belt running over the pulley of a small motor. This should have a variable-speed control so that the wheel will rotate slowly enough to allow the lettering on the sign to be read easily.
Ken Murray, Baltimore, Md.
(Julkinen kuulutus - avioero)
Suomalainen Wirallinen Lehti 90, 21.4.1885
Koska minun mieheni, Wärjäri Wilhelm Numminen on lähtenyt kotoansa pois, niin saan täten ilmoittaa,että jos hän ei yön ja wuoden sisällä löydytä itseänsä yhteiselämään minun kanssani, niin haen laillisen eron ja menen toiseen naimiseen. Heinolassa, huhtikuun 14 p 1885.
Wilhelmina Numminen.
Koska minun mieheni, Wärjäri Wilhelm Numminen on lähtenyt kotoansa pois, niin saan täten ilmoittaa,että jos hän ei yön ja wuoden sisällä löydytä itseänsä yhteiselämään minun kanssani, niin haen laillisen eron ja menen toiseen naimiseen. Heinolassa, huhtikuun 14 p 1885.
Wilhelmina Numminen.
Richardson: Color Magic With Black Light
Popular Mechanics, kesäkuu 1945
By Judith Richardson
What black light is Shortwave or ultraviolet radiations are popularly called black light. Most powerful white lights produce invisible black light when white rays are screened out with a filter
What is does
Black light is associated with the effect known as fluorescence. Fluorescence is the property possessed by over 3,000 materials of glowing or changing color when exposed to black light rays.
Bradley Smith Photo
Whether it's for fun or profit, you're sure to get a thrill out of black light, the latest brainchild of lighting science; a magic invisible ray that transforms "ugly ducklings" into colorful beauties.
Black light consists of a wide band of radiations immediately below the visible spectrum. If you filter out the white light from sunlight or any other strong white light, the remaining black-light rays then will be able to demonstrate their magic. What it is and what it does is indicated in Fig. 1. This magic is called fluorescence, and, simply put, meand that various materials change color or glow when exposed to black-light rays. Over 3,000 materials are fluorescent, and the strongest of these materials are incorporated in paints, silks, cosmetics, plastics, coated paper, smoke powders and other products. Popular light sources to activate these materials are shown in Fig. 2. Lamps for this purpose are available in several styles from 50 cents up. Fig.3 shows the disassembly of the 100-watt mercuryvapor lamp, which is most popular of the various black lights. Fig. 8 gives data which will enable you to pick a light for your purpose.
Black lights can be obtained in several popular styles in a price range from fifty cents up. Photo at right shows dissembly of popular 100-watt mercury-vapor flood. Charasteristics of all lights are given in handy tabular form in Fig. 8
How do you use this black light? Well, if you want it just as a hobby or for decoration, look at the little whatnot cabinet shown in Fig. 4. [PUUTTUU] Nice enough under white light, but under black light the display on the lower shelf is truly a magic fairyland of color. Fig.5 [PUUTTUU] is the poor reproduction in black-and-white, but it will give you an idea of how the black light makes fluorescent objects glow. Best results are obtained in a darkened room, but this doesn't mean you have to turn off all the lights. Fig 6 [PUUTTUU] shows the arrangement of the lamps and how the shelves are constructed. The wiring diagram is given in Fig. 7. [PUUTTUU]
Again, suppose your club or church puts on some kind of performance, such as the ice ballet shown in Fig. 9. Under black lightm your perdormers can be made to appear like the one in Fig. 10. The costumes are simply a matter of sewing fluorescent silk designs to the regular wardrobe, and painting the shoes with invisible fluorescent lacquer. If you go to a theater having special fluorescent carpeting, you won't have the least trouble in finding your way down the aisle, Figs. 11 and 12, and you will enhoy the glowing beauty of fluorescent murals, such as shown in Fig 14. Fig. 13 shows an example of spongestipple technique for application of invisible fluorescent lacquer over a picture.
Costumes of fluorescent silk with applique design on skirts add novel touch to this ice ballet
Carpeting in fluorescent design eliminates groping around in theater aisles
Pictures and murals are gems of color. Example here shows sponge-stipple technique for application of invisible lacquer over picture
Signs under black light are novel in advertising. Example above shows effect of flasher system.
Not yet developed to any great extent, black light is certain to be used extensively for advertising displays and signs. Figs. 15 and 16 show an example of a small counter sign, using both white and black light. Construction of the sign is given in Fig. 17. The black light burns continuously, while the white light flashes off and on at two-second intervals. Even in ordinary room light the fluorescence is strong and distinct. This sign looks unusually well when done in plastics, but also is attractive in cabinet woods or veneer. Either thin plastic or veneer will be necessary to form the rounded lamp housings, which are open at the inner corners so that light is directed onto the picture or lettering. Figs. 18 and 19 show another type of sign of simple construction. It consists of a plywood base supporting a back in a grooved strip, and a scrolled front, which hides the lamp. Many locations are "naturals" for black light. Posters in the foyer of a theater or any sign or decoration in the dimly illuminated interior of a night club are typical. The absence of glare and visible white light has made fluorescent instrument panels a "must" on fighter aircraft, and it is expected that automobile and radio manufacturers will follow suit.
It's more than a matter of just being pretty to look at. Sorters of acetate and cellulose yarns do the job quickly and accurately because the yarns glow differently under black light although identical under white light. In culling seed beans, a bright streak of blue means that that particular bean goes in the discard since blue indicates that the non-fluorescent skin is broken, making the bean liable to disease. Hundreds of laundries have adopted black light in connection with invisible marking ink. Instead of using passout checks, many dance halls now stamp an invisible mark on the back of the hand, which glows brilliant green under black light. Prospectors on the trail of the caluable tungsten mineral, scheelite, know they have struck pay dirst when rock gives back a ghostly blue under black-light rays. Criminologists have a new weapon in black light, most spectacular being use of invisible anthracene powder, which, sprinkled on the floor or around locks, is picked up on shoes or hands of a suspect and then dramatically revealed.
The list of black-light uses is almost endless, but to get back to something anyone can enjoy, consider fluorescent minerals. It's a real thrill to collect these specimens and exhibit them to your friends. Fig. 20 gives a standard list which you can buy from any dealer. [KUVAN TIEDOT ALLA]
Principal Fluorescent Minerals
Mineral | Color at 2550 A | Color at 3600 A
Agate (Sweetwater) Green Negative
Aragonite Green Green
Autunite Yel.-Green Yel.-Green
Calcite Red or Blue Negative
Curtisite Yel.-Green Yel.-Green
Dakeite Yel.-Green Yel.-Green
Fluorite Blue Blue
Hackmanite Orange Orange
Hydrozincite Blue Negative
Opal Green Hreen
Powellite Yel. White Negative
Selenite Green Green
Scheelite Blue-White Negative
Sphalerite Orange Orange
Torbernite Yel.-Green Yel.-Green
Wernerite Negative Yellow
Willemite Green Green
Willemite and Calcite Green and Red Green
Minerals which fluoresce under black light make an interesting hobby. Light equipment should include both short and long rays. Good mineral specimens are brilliant in coloring and include all the variegations of the rainbow
Good mineral specimens are brilliant in coloring and include all the variegations of the rainbow. Light equipment should include both short and long rays. Most of the stones show brightest under short rays, such as produced by the cold-quartz lamp, but a good collection can be made of stones fluorescing at 3,600 angstroms. Fig. 21 pictures ideal light equipment - a cold-quartz lamp and black-light tubular. Less expensive, the black bulb is an excellent light source at the 3,600-angstrom level. Even the little argon will do the trick with many minerals, and a neat-looking job can be made by housing the bulb in a card-board tube, as shown in Fig. 22. The jar lid over the end of the tube permits using purple Cellophane as a filter, but this is not essential. A bottomless peek-box unit, Fig. 23, which permits examining minerals and other fluorescent objects in daylight can be made from scraps of plywood and two argon bulbs, as shown in Fig. 24.
No one style of liht is suitable for every purpose. None of the lights is truly "black," since all pass a certain amount of visible red-purple rays. This feature is subject to some control by means of the filter. A complete blackout filter cuts off all visible light but also reduces the amount of black light. The standard red-purple filter passes a small amount of visible red-purple, these rays being invisible in the presence of even a small amount of outside white light. Special heat-resisting filters are required for high-intensity mercury-vapor and other hot lamps. Cold lights such as the tubulars and argon can make effective use of purple Cellophane, lacquer films or inexpensive blue glass. All light sources given are harmless to eyes or skin except the cold-quartz lamp. The extremely short rays from this light will cause reddening of the skin similar to sunburn, hence the light must be kept away from the body when in use. The cold-quartz lamp is used mainly for showing minerals. All other lights are keyed to the 3,600-angstrom level since it is on or near this band that most paints, dyes and other products fluoresce the strongest.
The technique of using fluorescent paints is easy to master and lots of fun. You have a full range of colors, both transparent and opaque. Also, there are colorler lacquers that fuoresce white, blue and green, plus several whites which glow in different colors. paints can be obtained in either lacquer base or water color, the lacquer product being the best for most uses. The best ground is a non-reflecting white illustration board or any kind of surface painted with white or a light tint water-mix paint. Dark bases should be avoided since they weaken fluorescence. If you use a black card or cloth as a ground, first do the design with white water-mix paint, then apply fluorescent lacquer over it. Fig. 18 is an example of this technique, done in blue and yellow on a black card.
Paint technique
Both cards above are blank under white light, the clear fluorescent lacquer being invisible. Under black light , the untreated areas turn black while fluorescent backwground of Fig. 25 and letters of Fig. 26 glow blue
Combining use of invisible lacquer with a color change, black-light view of this vard shows a green outline around the black portions. At the same time, dark-pink colored portions will change to a brilliant glowing yellow
This sample shows picture change technique. White-light view is done with non-fluorescent paint, with second picture superimposed and done with fluorescent lacquer. Use non-fluorescent colors carefully for uniform fadeout
The normal method of painting is to use colored fluorescent lacquers, and the design does not change materially when viewed under either black or white light, except that it takes on a glowing quality under black light. A similar technique is used in going over non-fluorescent pictures with fluorescent lacquer. In this case transparent colors are used, as these do not conceal fine detail or shading in the original picture. Another treatment for non-fluorescent pictures or objects is to use the invisible colors. These are water-white as applied but glow brilliant blue, green and white under black light. These colors can be used for invisible pictures or signs. Figs. 25 and 26 are examples. Both of these are plain white cards under white light. Fig. 25 has the background painted invisible green; hence under black light the background glows green and the non-fluorescent letters stand out black. In Fig.26 the lettering is green and the backrgound untreated. Figs. 27 and 28 show the color-change technique where the design is one color under white light and changes color under black light. Figs. 29 and 30 show the double-picture style. This ordinarily is the most difficult to handle. An essential is that the sign or picture must be viewed in almost total darkness. The second basic rule is that the non.fluorescent paint used for the white-light effect must face out completely under black light. The right colors to use can be determined by golding colored test strips of non-reflecting cardboard or paint under the black light, picking out a set of colors that have the same darkness under black light. In this sample the ground is yellow and the lettering green; both fade out black under black light. Third basic rule is that the superimposed design must be almost entirely in line since any large use of the invisible lacquer will light up the whole panel and thus expose the original picture. A coat of clear flat lacquer over the whole panel serves as a means of cencealing the glossy highlights of the invisible picture.
By Judith Richardson
What black light is Shortwave or ultraviolet radiations are popularly called black light. Most powerful white lights produce invisible black light when white rays are screened out with a filter
What is does
Black light is associated with the effect known as fluorescence. Fluorescence is the property possessed by over 3,000 materials of glowing or changing color when exposed to black light rays.
Bradley Smith Photo
Whether it's for fun or profit, you're sure to get a thrill out of black light, the latest brainchild of lighting science; a magic invisible ray that transforms "ugly ducklings" into colorful beauties.
Black light consists of a wide band of radiations immediately below the visible spectrum. If you filter out the white light from sunlight or any other strong white light, the remaining black-light rays then will be able to demonstrate their magic. What it is and what it does is indicated in Fig. 1. This magic is called fluorescence, and, simply put, meand that various materials change color or glow when exposed to black-light rays. Over 3,000 materials are fluorescent, and the strongest of these materials are incorporated in paints, silks, cosmetics, plastics, coated paper, smoke powders and other products. Popular light sources to activate these materials are shown in Fig. 2. Lamps for this purpose are available in several styles from 50 cents up. Fig.3 shows the disassembly of the 100-watt mercuryvapor lamp, which is most popular of the various black lights. Fig. 8 gives data which will enable you to pick a light for your purpose.
Black lights can be obtained in several popular styles in a price range from fifty cents up. Photo at right shows dissembly of popular 100-watt mercury-vapor flood. Charasteristics of all lights are given in handy tabular form in Fig. 8
How do you use this black light? Well, if you want it just as a hobby or for decoration, look at the little whatnot cabinet shown in Fig. 4. [PUUTTUU] Nice enough under white light, but under black light the display on the lower shelf is truly a magic fairyland of color. Fig.5 [PUUTTUU] is the poor reproduction in black-and-white, but it will give you an idea of how the black light makes fluorescent objects glow. Best results are obtained in a darkened room, but this doesn't mean you have to turn off all the lights. Fig 6 [PUUTTUU] shows the arrangement of the lamps and how the shelves are constructed. The wiring diagram is given in Fig. 7. [PUUTTUU]
Again, suppose your club or church puts on some kind of performance, such as the ice ballet shown in Fig. 9. Under black lightm your perdormers can be made to appear like the one in Fig. 10. The costumes are simply a matter of sewing fluorescent silk designs to the regular wardrobe, and painting the shoes with invisible fluorescent lacquer. If you go to a theater having special fluorescent carpeting, you won't have the least trouble in finding your way down the aisle, Figs. 11 and 12, and you will enhoy the glowing beauty of fluorescent murals, such as shown in Fig 14. Fig. 13 shows an example of spongestipple technique for application of invisible fluorescent lacquer over a picture.
Costumes of fluorescent silk with applique design on skirts add novel touch to this ice ballet
Carpeting in fluorescent design eliminates groping around in theater aisles
Pictures and murals are gems of color. Example here shows sponge-stipple technique for application of invisible lacquer over picture
Signs under black light are novel in advertising. Example above shows effect of flasher system.
Not yet developed to any great extent, black light is certain to be used extensively for advertising displays and signs. Figs. 15 and 16 show an example of a small counter sign, using both white and black light. Construction of the sign is given in Fig. 17. The black light burns continuously, while the white light flashes off and on at two-second intervals. Even in ordinary room light the fluorescence is strong and distinct. This sign looks unusually well when done in plastics, but also is attractive in cabinet woods or veneer. Either thin plastic or veneer will be necessary to form the rounded lamp housings, which are open at the inner corners so that light is directed onto the picture or lettering. Figs. 18 and 19 show another type of sign of simple construction. It consists of a plywood base supporting a back in a grooved strip, and a scrolled front, which hides the lamp. Many locations are "naturals" for black light. Posters in the foyer of a theater or any sign or decoration in the dimly illuminated interior of a night club are typical. The absence of glare and visible white light has made fluorescent instrument panels a "must" on fighter aircraft, and it is expected that automobile and radio manufacturers will follow suit.
It's more than a matter of just being pretty to look at. Sorters of acetate and cellulose yarns do the job quickly and accurately because the yarns glow differently under black light although identical under white light. In culling seed beans, a bright streak of blue means that that particular bean goes in the discard since blue indicates that the non-fluorescent skin is broken, making the bean liable to disease. Hundreds of laundries have adopted black light in connection with invisible marking ink. Instead of using passout checks, many dance halls now stamp an invisible mark on the back of the hand, which glows brilliant green under black light. Prospectors on the trail of the caluable tungsten mineral, scheelite, know they have struck pay dirst when rock gives back a ghostly blue under black-light rays. Criminologists have a new weapon in black light, most spectacular being use of invisible anthracene powder, which, sprinkled on the floor or around locks, is picked up on shoes or hands of a suspect and then dramatically revealed.
The list of black-light uses is almost endless, but to get back to something anyone can enjoy, consider fluorescent minerals. It's a real thrill to collect these specimens and exhibit them to your friends. Fig. 20 gives a standard list which you can buy from any dealer. [KUVAN TIEDOT ALLA]
Principal Fluorescent Minerals
Mineral | Color at 2550 A | Color at 3600 A
Agate (Sweetwater) Green Negative
Aragonite Green Green
Autunite Yel.-Green Yel.-Green
Calcite Red or Blue Negative
Curtisite Yel.-Green Yel.-Green
Dakeite Yel.-Green Yel.-Green
Fluorite Blue Blue
Hackmanite Orange Orange
Hydrozincite Blue Negative
Opal Green Hreen
Powellite Yel. White Negative
Selenite Green Green
Scheelite Blue-White Negative
Sphalerite Orange Orange
Torbernite Yel.-Green Yel.-Green
Wernerite Negative Yellow
Willemite Green Green
Willemite and Calcite Green and Red Green
Minerals which fluoresce under black light make an interesting hobby. Light equipment should include both short and long rays. Good mineral specimens are brilliant in coloring and include all the variegations of the rainbow
Good mineral specimens are brilliant in coloring and include all the variegations of the rainbow. Light equipment should include both short and long rays. Most of the stones show brightest under short rays, such as produced by the cold-quartz lamp, but a good collection can be made of stones fluorescing at 3,600 angstroms. Fig. 21 pictures ideal light equipment - a cold-quartz lamp and black-light tubular. Less expensive, the black bulb is an excellent light source at the 3,600-angstrom level. Even the little argon will do the trick with many minerals, and a neat-looking job can be made by housing the bulb in a card-board tube, as shown in Fig. 22. The jar lid over the end of the tube permits using purple Cellophane as a filter, but this is not essential. A bottomless peek-box unit, Fig. 23, which permits examining minerals and other fluorescent objects in daylight can be made from scraps of plywood and two argon bulbs, as shown in Fig. 24.
No one style of liht is suitable for every purpose. None of the lights is truly "black," since all pass a certain amount of visible red-purple rays. This feature is subject to some control by means of the filter. A complete blackout filter cuts off all visible light but also reduces the amount of black light. The standard red-purple filter passes a small amount of visible red-purple, these rays being invisible in the presence of even a small amount of outside white light. Special heat-resisting filters are required for high-intensity mercury-vapor and other hot lamps. Cold lights such as the tubulars and argon can make effective use of purple Cellophane, lacquer films or inexpensive blue glass. All light sources given are harmless to eyes or skin except the cold-quartz lamp. The extremely short rays from this light will cause reddening of the skin similar to sunburn, hence the light must be kept away from the body when in use. The cold-quartz lamp is used mainly for showing minerals. All other lights are keyed to the 3,600-angstrom level since it is on or near this band that most paints, dyes and other products fluoresce the strongest.
The technique of using fluorescent paints is easy to master and lots of fun. You have a full range of colors, both transparent and opaque. Also, there are colorler lacquers that fuoresce white, blue and green, plus several whites which glow in different colors. paints can be obtained in either lacquer base or water color, the lacquer product being the best for most uses. The best ground is a non-reflecting white illustration board or any kind of surface painted with white or a light tint water-mix paint. Dark bases should be avoided since they weaken fluorescence. If you use a black card or cloth as a ground, first do the design with white water-mix paint, then apply fluorescent lacquer over it. Fig. 18 is an example of this technique, done in blue and yellow on a black card.
Paint technique
Both cards above are blank under white light, the clear fluorescent lacquer being invisible. Under black light , the untreated areas turn black while fluorescent backwground of Fig. 25 and letters of Fig. 26 glow blue
Combining use of invisible lacquer with a color change, black-light view of this vard shows a green outline around the black portions. At the same time, dark-pink colored portions will change to a brilliant glowing yellow
This sample shows picture change technique. White-light view is done with non-fluorescent paint, with second picture superimposed and done with fluorescent lacquer. Use non-fluorescent colors carefully for uniform fadeout
The normal method of painting is to use colored fluorescent lacquers, and the design does not change materially when viewed under either black or white light, except that it takes on a glowing quality under black light. A similar technique is used in going over non-fluorescent pictures with fluorescent lacquer. In this case transparent colors are used, as these do not conceal fine detail or shading in the original picture. Another treatment for non-fluorescent pictures or objects is to use the invisible colors. These are water-white as applied but glow brilliant blue, green and white under black light. These colors can be used for invisible pictures or signs. Figs. 25 and 26 are examples. Both of these are plain white cards under white light. Fig. 25 has the background painted invisible green; hence under black light the background glows green and the non-fluorescent letters stand out black. In Fig.26 the lettering is green and the backrgound untreated. Figs. 27 and 28 show the color-change technique where the design is one color under white light and changes color under black light. Figs. 29 and 30 show the double-picture style. This ordinarily is the most difficult to handle. An essential is that the sign or picture must be viewed in almost total darkness. The second basic rule is that the non.fluorescent paint used for the white-light effect must face out completely under black light. The right colors to use can be determined by golding colored test strips of non-reflecting cardboard or paint under the black light, picking out a set of colors that have the same darkness under black light. In this sample the ground is yellow and the lettering green; both fade out black under black light. Third basic rule is that the superimposed design must be almost entirely in line since any large use of the invisible lacquer will light up the whole panel and thus expose the original picture. A coat of clear flat lacquer over the whole panel serves as a means of cencealing the glossy highlights of the invisible picture.
Punainen paholainen.
Rauman Lehti 42, 21.10.1882
Eräs henkilö punaisessa dominopuwussa on wiime iltoina liikkunut Turun kaduilla, pelotellen woimainsa mukaan yksinäisiä ihmisiä, onpa se etsinyt itselleen toimialaa asuinhuoneiden eteisissäkin, josta woinee päätellä, ettei hänen tarkoituksensa ole paljas kummitteleminen.
(Aruta.)
Eräs henkilö punaisessa dominopuwussa on wiime iltoina liikkunut Turun kaduilla, pelotellen woimainsa mukaan yksinäisiä ihmisiä, onpa se etsinyt itselleen toimialaa asuinhuoneiden eteisissäkin, josta woinee päätellä, ettei hänen tarkoituksensa ole paljas kummitteleminen.
(Aruta.)
Simple Homemade Paint Keeps Incinerators Attractive
Popular Mechanics, kesäkuu 1945
We have been using an old oil drum for an incinerator and have experienced some difficulty in finding a paint that would keep it looking attractive. Commercial paints available always darkened after a few fires had been built in the incinerator. While experimenting to find a paint that would not darken under heat, I used some powdered aluminum and sodium silicate (water glass) mixed to the consistency of paint and the results have been highly satisfactory. This mixture resembles flat white paitn more than it does aluminum paint. It is applied to the metal with an ordinary paintbrush after removing loose rust and dirt particles. The surface to be painted need not be dry as the paint itself contains water. After drying for a few hours, the surface should be heated, in this case by merely building a fire in the incinerator. If heating is not convenient, the surface should be wiped with a mineral-acid solution such as muriatic or sulphuric acid. The resulting film withstands even the heat of a direct gas flame, and does not seem to be affected by water. Undoubtedly similar mixtures of other powdered metals would produce results equal to these.
Frank A. Knight, Bangor, Me.
We have been using an old oil drum for an incinerator and have experienced some difficulty in finding a paint that would keep it looking attractive. Commercial paints available always darkened after a few fires had been built in the incinerator. While experimenting to find a paint that would not darken under heat, I used some powdered aluminum and sodium silicate (water glass) mixed to the consistency of paint and the results have been highly satisfactory. This mixture resembles flat white paitn more than it does aluminum paint. It is applied to the metal with an ordinary paintbrush after removing loose rust and dirt particles. The surface to be painted need not be dry as the paint itself contains water. After drying for a few hours, the surface should be heated, in this case by merely building a fire in the incinerator. If heating is not convenient, the surface should be wiped with a mineral-acid solution such as muriatic or sulphuric acid. The resulting film withstands even the heat of a direct gas flame, and does not seem to be affected by water. Undoubtedly similar mixtures of other powdered metals would produce results equal to these.
Frank A. Knight, Bangor, Me.
8.2.10
Wanhojen egyptiläisten wärit.
Karjalatar 8, 22.1.1898
Wärit wanhoissa egyptiläisissä muistopatsaissa owat wielä tänään ihmeen eläwiä ja tuoreita, huolimatta korkeasta ijästään ja waikka ne osittain owat olleet alttiita wuosituhannen waiheille. Kaikki sen ajan wärit owat otetut kiwennäis-kunnasta. Kerromme tässä muutamin sanoin niiden aineyhdistyksistä ja todennäköisestä walmistamis-tawasta.
Enemmän käytetty wäri oli punaisenruskea, jota me nimitämme pompeijilaiseksi punaksi. Se oli sawen ja rautahappeuman sekoitusta, jota saatiin Egyptin rautakiillekerroksista. Tämä wäri on niin hienorakeista, että se, erittäin rautahappeuma, tullakseen kelwolliseksi täydyttiin huolellisesti surwoa ja aineosat huuhtoa. Keltawärinä käytettiin, paitsi kultapronssia ja lehtikultaa, jotka jo silloin oliwat tunnettuja, samaten erästä rautahappeumaa (keltamultaa), johon lisättiin waihtelewat määrät sawea, kalkkia, y. m. ja jaettiin erillaisiin wäliwäreihin. Kuumentamalla saatiin sekotuksesta tummanruskeita wäriwiwahduksia ja lisäämällä punaista, punakellerwän wärisiä wiwahduksia. Sinisiä waärejä antoiwat lasisulatteet, jotka sisälsiwät kuparia. Wärihiukkasten hienous saattaa todenmukaiseksi sen ajatuksen että wielä kuumana olewa lasi kaadettiin kylmään weteen, ja siten saatu hauras ja lukemattomien hienojen säröjen halkoma ainejoukko hienonnettiin ja huuhdottiin. Walkeana wärinä käytettiin kipsiä, ja samaa ainetta käytettiin myös elimellisellä aineella wärjättynä waalean punaisena. Mistä tätä elimellistä wäriainetta tuotiin ei tiedetä warmuudella, mutta on luultawaa, että se oli krappipunasta (alitsarinia), jota jo egyptiläiset ymmärsiwät ottaa krappijuuresta.
Wanhat egyptiläiset rakennusmestarit tiesiwät itse wäriensä kestäwäisyyden ja muuttumattomuuden. Niinpä löytyy eräs kirjoitus pyramiidi rakentajan Neh-Fermads'in tekemällä rakennuksella, joka selwittää käytettyjen wärien käyttötawan ja sisältää sanat:
"Wärikoristeet temppelissä owat yhtä ikuisia kuin itse jumalat."
Wärit wanhoissa egyptiläisissä muistopatsaissa owat wielä tänään ihmeen eläwiä ja tuoreita, huolimatta korkeasta ijästään ja waikka ne osittain owat olleet alttiita wuosituhannen waiheille. Kaikki sen ajan wärit owat otetut kiwennäis-kunnasta. Kerromme tässä muutamin sanoin niiden aineyhdistyksistä ja todennäköisestä walmistamis-tawasta.
Enemmän käytetty wäri oli punaisenruskea, jota me nimitämme pompeijilaiseksi punaksi. Se oli sawen ja rautahappeuman sekoitusta, jota saatiin Egyptin rautakiillekerroksista. Tämä wäri on niin hienorakeista, että se, erittäin rautahappeuma, tullakseen kelwolliseksi täydyttiin huolellisesti surwoa ja aineosat huuhtoa. Keltawärinä käytettiin, paitsi kultapronssia ja lehtikultaa, jotka jo silloin oliwat tunnettuja, samaten erästä rautahappeumaa (keltamultaa), johon lisättiin waihtelewat määrät sawea, kalkkia, y. m. ja jaettiin erillaisiin wäliwäreihin. Kuumentamalla saatiin sekotuksesta tummanruskeita wäriwiwahduksia ja lisäämällä punaista, punakellerwän wärisiä wiwahduksia. Sinisiä waärejä antoiwat lasisulatteet, jotka sisälsiwät kuparia. Wärihiukkasten hienous saattaa todenmukaiseksi sen ajatuksen että wielä kuumana olewa lasi kaadettiin kylmään weteen, ja siten saatu hauras ja lukemattomien hienojen säröjen halkoma ainejoukko hienonnettiin ja huuhdottiin. Walkeana wärinä käytettiin kipsiä, ja samaa ainetta käytettiin myös elimellisellä aineella wärjättynä waalean punaisena. Mistä tätä elimellistä wäriainetta tuotiin ei tiedetä warmuudella, mutta on luultawaa, että se oli krappipunasta (alitsarinia), jota jo egyptiläiset ymmärsiwät ottaa krappijuuresta.
Wanhat egyptiläiset rakennusmestarit tiesiwät itse wäriensä kestäwäisyyden ja muuttumattomuuden. Niinpä löytyy eräs kirjoitus pyramiidi rakentajan Neh-Fermads'in tekemällä rakennuksella, joka selwittää käytettyjen wärien käyttötawan ja sisältää sanat:
"Wärikoristeet temppelissä owat yhtä ikuisia kuin itse jumalat."
At Last - A Multi-Purpose Paint
Kiplinger's Personal Finance, helmikuu 1950
Answer to a question starts a business
A question he couldn't get out of his mind - "Why shouldn't there be one kind of paint that you could use on everything?" - started Frank E. Felt on the road to having a manufacturing business of his own. But 12 years and a lot of work elapsed before Felt found the answer to his question and thereby acquired the business.
At the time the question started nagging at Felt, he was only four years out of Brown University and was running a small paint store in Winchester, Mass. He could not see any sense in forcing people to buy one kind of paint for walls, another kind for floors, another kind for metals, and a still different kind of material - shellac or varnish - for finishing wood surfaces. But no multi-purpose paint existed.
Felt decided to invent one. It was a bold decison. He was an engineer, not a chemist. He had no laboratory, no particular know-how in compounding paint, and no capital. He had to make a living while experimenting.
So he sold his not-too-prosperous paint store and took a job with E. B. Badger & Sons Co., of Boston, construction engineers. In his spare time he worked at his paint idea. He spent hundreds of hours in libraries reading everything on the subject. He took courses, including one in paint technology at the Massachusetts Institute of Technology. His research convinced Felt that if there was to be one coating that would stick to everything, it would have to be made from a new formula. That brought him to the use of a rubber base with a petroleum solvent rather than lead with oil.
When he started compounding rubber paints, Felt submitted them to large industrial laboratories for testing. The laboratories were interested and glad to work out particular problems for him. Among those which helped were Hercules Powder Co., American Cyanamid Co., Monsanto Chemical Co., Shell Union Oil Corp., and Esso Standard Oil Co.
At the end of the war Felt quit his job in order to spend full time on the final stages. By 1948 the chief problem was one of setting up and financing a business to manufacture and sell the new product.
Felt persuaded Frank V. Widger, head of the asphalt department of the Texas Co., to join him. Widger had been in the asphalt business for more than 30 years, and his experience was valuable. He supplied the capital for a small factory in Detroit. When that plant was damaged by fire, it was decided to move operations to Alexandria, Va., where Felt has his home.
The partners did some further work on their formula, and by 1949 their tests showed that they had a coating which could be used on any kind of material for all purposes and which also had some other remarkable qualities. They called it "Prolac."
Clear and uncolored, Prolac serves all the purposes of a shellac. It is waterproof, and you can even spill alcohol on a surface covered with it without making a white mark. It is impervious to acids.
With "ground-in" rubber colors added, Prolac becomes a "paint." It dries in 20 minutes. It doesn't face, chip or crack. Some test panels which have been exposed at the Hercules laboratories for 76 months show no signs of wear.
One thing about Prolac appeals to the amateur is that it leaves no brush marks. An Alexandria garage owner who has been using it on his concrete floors puts it on with an ordinary push broom.
A manufacturer of caddie arts, the little contricances golfers use to save their backs, cut two hours from his manufacturing time by using quick-drying Proclac. An Alexandria iron manufacturer is using it instead of the traditional red lead to protect girders.
The materials that go into Prolac cost more than lead and oil. Therefore to keep the price of the product down, economies have to be made in various ways. One competitive advantage is that no elaborate factory is necessary. The Felt-Widger plant consists of a large mixer and a lot of metal drums. That's about all.
A cut in costs is achieved by inexpensive distribution. Prolac is not sold through regular retail channels. The two partners sell direct to the consumer. In the present stage, that means individually drumming up customers, calling on the garage man, talking to the housewife who wants to paint her kitchen, demonstrating the use of Prolac to the dairy which has had trouble with the effects of lactic acid on painted surfaces.
Felt and Wigder, now incorporated under the name Widger Products Corp., expect to expand and set up dealers in other parts of the country. All about all a dealer need is a place big enough to store drums of Prolac and space for canning it in smaller containers.
So far, the Felt-Widger business is very small. Returns in the first year did not wide pout development expenses. After the partners tooks modest salaries, all other profits were plowed back into the business. But Felt and Widger confidently expect a prosperous future. The question Felt asked 12 years ago, and finally answered, promises to pay off.
Answer to a question starts a business
A question he couldn't get out of his mind - "Why shouldn't there be one kind of paint that you could use on everything?" - started Frank E. Felt on the road to having a manufacturing business of his own. But 12 years and a lot of work elapsed before Felt found the answer to his question and thereby acquired the business.
At the time the question started nagging at Felt, he was only four years out of Brown University and was running a small paint store in Winchester, Mass. He could not see any sense in forcing people to buy one kind of paint for walls, another kind for floors, another kind for metals, and a still different kind of material - shellac or varnish - for finishing wood surfaces. But no multi-purpose paint existed.
Felt decided to invent one. It was a bold decison. He was an engineer, not a chemist. He had no laboratory, no particular know-how in compounding paint, and no capital. He had to make a living while experimenting.
So he sold his not-too-prosperous paint store and took a job with E. B. Badger & Sons Co., of Boston, construction engineers. In his spare time he worked at his paint idea. He spent hundreds of hours in libraries reading everything on the subject. He took courses, including one in paint technology at the Massachusetts Institute of Technology. His research convinced Felt that if there was to be one coating that would stick to everything, it would have to be made from a new formula. That brought him to the use of a rubber base with a petroleum solvent rather than lead with oil.
When he started compounding rubber paints, Felt submitted them to large industrial laboratories for testing. The laboratories were interested and glad to work out particular problems for him. Among those which helped were Hercules Powder Co., American Cyanamid Co., Monsanto Chemical Co., Shell Union Oil Corp., and Esso Standard Oil Co.
At the end of the war Felt quit his job in order to spend full time on the final stages. By 1948 the chief problem was one of setting up and financing a business to manufacture and sell the new product.
Felt persuaded Frank V. Widger, head of the asphalt department of the Texas Co., to join him. Widger had been in the asphalt business for more than 30 years, and his experience was valuable. He supplied the capital for a small factory in Detroit. When that plant was damaged by fire, it was decided to move operations to Alexandria, Va., where Felt has his home.
The partners did some further work on their formula, and by 1949 their tests showed that they had a coating which could be used on any kind of material for all purposes and which also had some other remarkable qualities. They called it "Prolac."
Clear and uncolored, Prolac serves all the purposes of a shellac. It is waterproof, and you can even spill alcohol on a surface covered with it without making a white mark. It is impervious to acids.
With "ground-in" rubber colors added, Prolac becomes a "paint." It dries in 20 minutes. It doesn't face, chip or crack. Some test panels which have been exposed at the Hercules laboratories for 76 months show no signs of wear.
One thing about Prolac appeals to the amateur is that it leaves no brush marks. An Alexandria garage owner who has been using it on his concrete floors puts it on with an ordinary push broom.
A manufacturer of caddie arts, the little contricances golfers use to save their backs, cut two hours from his manufacturing time by using quick-drying Proclac. An Alexandria iron manufacturer is using it instead of the traditional red lead to protect girders.
The materials that go into Prolac cost more than lead and oil. Therefore to keep the price of the product down, economies have to be made in various ways. One competitive advantage is that no elaborate factory is necessary. The Felt-Widger plant consists of a large mixer and a lot of metal drums. That's about all.
A cut in costs is achieved by inexpensive distribution. Prolac is not sold through regular retail channels. The two partners sell direct to the consumer. In the present stage, that means individually drumming up customers, calling on the garage man, talking to the housewife who wants to paint her kitchen, demonstrating the use of Prolac to the dairy which has had trouble with the effects of lactic acid on painted surfaces.
Felt and Wigder, now incorporated under the name Widger Products Corp., expect to expand and set up dealers in other parts of the country. All about all a dealer need is a place big enough to store drums of Prolac and space for canning it in smaller containers.
So far, the Felt-Widger business is very small. Returns in the first year did not wide pout development expenses. After the partners tooks modest salaries, all other profits were plowed back into the business. But Felt and Widger confidently expect a prosperous future. The question Felt asked 12 years ago, and finally answered, promises to pay off.
7.2.10
Tietoa eri aloilta. Muodin orjia.
Aamulehti 129, 8.6.1909
Wiime wuosina on muoti waatinut, että ylhäisien naisten, jos he nimittäin tahtowat käydä kaikkein ylhäisimmisiä pitää olla waaleatukkaisia. Ja sen, jolle luonto ei ole antanut waaleata tukkaa, on tietysti täytynyt saada se waaleaksi keinotekoisesti, wärjäämällä.
Älköön kuitenkaan kukaan olko siinä luulossa, että tukan wärjääminen on mitään uutta tai muuten erikoista meidän aikanamme. Päinwastoin on jalo tapa kotoisin harmaasta menneisyydestä saakka. Egyptiläisten hautakammioiden seinämaalauksissa on kaikki henkilöt, wanhat ja nuoret, esitetty pikimustalla tukalla, mikä näyttää todistawan, että jo siihen aikaan osattiin wäräjätä hiuksia, jos nimittäin ei tarwittu korwata tukan ja parran puutetta tekotukalla ja tekoparralla. Näitä on usein tawattu muinaisten egyptiläisten ruumisarkuista.
Kun woittoisa Caesar marssi Roomaan mukanaan joukko kumpaiseenkin sukupuoleen kuuluwia germanilaisia wankeja, ihastuiwat ylhäiset roomalaiset naiset muukalaisten waaleihin kiharoihin ja hiuspalmikoihin niin pahoin, että he heti paikalla halusiwat hankkia itselleen waaleat hiukset. Ensin käytettiin waaleita tekotukkia, mutta wähän ajan kuluttua alettiin keksiä erinäisiä wäriaineita, joiden awulla hiukset saatiin waaleiksi. Useat muinaisroomalaiset kirjailijat puhuwat sellaisista wäriaineista.
Wenetsian naisilla oli kuudennellatoista wuosisadalla erinäisiä reseptejä hiusten wärjäämistä warten. Siihen aikaan oli waalea tukka jälleen tullut muotiin ja mustan tukan wärjäämiseksi kullankeltaiseksi, jota wäriä aina saa ihailla sen aikuisissa tauluissa, käytettiin merkillistä sekoitusta damaskoloisesta saippuasta ja alunasta, joita keitettiin wedessä. Tätä sekoitusta oli käytettäwä päiwittäin useiden wiikkojen kuluessa, mutta toiwotun lopputuloksen saawittamiseksi oli hiukset wielä asetettawa neljäksi tunniksi päiwässä helteisen päiwäpaisteen waikutuksen alaisiksi. Tämä kaunistus- tai oikeastaan walkaisutapa näyttää olleen kaikkea muuta kuin hupainen, mutta tunnetaanhan, että nainen woi kärsiä melkeimpä waikka mitä kunhan wain hänen kauneutensa siitä lisääntyy.
Nykyaikainen tiede on onneksi keksinyt mukawampia, parempia ja waikuttawampia keinoja hiusten wärjäämiseksi ja erittäinkin on huomattawa, että wärjääminen nykyaikaan käy monin kerroin nopeammin. Kastanjanwärinen tukka, jossa wielä on loistawia wiwahduksiakin, saadaan aikaan eräänlaisella pulwerilla, jota lämpimässä kääreessä pidetään hiuksilla neljän tunnin aika.
Jo muinaisina aikoina käyttiwät kaunottaret monenlaisia salwoja, jauheita, wärejä, kosmetisia aineita ja hajuwesiä luonnollisen sulonsa lisäämiseksi. Bysantiumin ja Roomna naiset poistiwat huolellisesti kaikki karwat kaswoistaan ja käsiwarsistaan ja esiintyiwät yleensä wärjätyin hiuksin ja maalatuin kaswoin. Usein meniwät he wieläkin pidemmälle: he puuteroiwat tukkansa kullanwärisellä jauheella silloin kun he halusiwat esiintyä waaleatukkaisina tai sinisellä jauheella silloinkun musta hiusten wäri oli muodissa.
Itämaiset naiset owat aina käyttäneet ja käyttäwät wieläkin kaikenlaatuisia kosmetisia aineita lisätäkseen kauneuttaan tai parantaakseen ulkomuotoaan, jos luonto on heitä äitipuolen tawoin kohdellut. Köyhinkin arabialaisnainen maalaa kolalla silmänalusensa mustiksi, jotta silmät näyttäisivät suuremmilta.
Keskiaikana ja wielä kauan sen jälkeenkin - 16:nella ja 17:nellä wuosisadalla - oli tawallista, että Europan ylhäiset naiset käyttiwät kaikenmoisten ihmetohtorien apua kauneutensa lisäämiseksi. Kalliista hinnasta myiwät nämä keinottelijat herkkäyskoisille naisille "konnenswesiä" ja "kauneuseliksiirejä", mitä ei kuitenkaan estänyt naisia sen ohessa omin päinsäkin käyttämästä poskimaaleja, puuteria ja kaikenmoisia hywänhajuisia salwoja. Siihen aikaa noltiin siinä uskossa, että wesi turkemee ihon, erittäinkin sen sileän pinnan ja hienouden, jonka wuoksi naiset luonnollisesti pesiwät kaswonsa mahdollisimman harwoin. Nykyajan nainen on onneksi tässä suhteessa hieman järkewämpi, waikka tosin wieläkin on naisia, jotka ajattelewat: "ersin tosin ei yksin sitä aikaan saa", jonka vwuoksi weden apuna käytetään kaikenlaisia lisiä kosmetikan tawattoman rikkaasta aarreaitasta.
Wiime wuosina on muoti waatinut, että ylhäisien naisten, jos he nimittäin tahtowat käydä kaikkein ylhäisimmisiä pitää olla waaleatukkaisia. Ja sen, jolle luonto ei ole antanut waaleata tukkaa, on tietysti täytynyt saada se waaleaksi keinotekoisesti, wärjäämällä.
Älköön kuitenkaan kukaan olko siinä luulossa, että tukan wärjääminen on mitään uutta tai muuten erikoista meidän aikanamme. Päinwastoin on jalo tapa kotoisin harmaasta menneisyydestä saakka. Egyptiläisten hautakammioiden seinämaalauksissa on kaikki henkilöt, wanhat ja nuoret, esitetty pikimustalla tukalla, mikä näyttää todistawan, että jo siihen aikaan osattiin wäräjätä hiuksia, jos nimittäin ei tarwittu korwata tukan ja parran puutetta tekotukalla ja tekoparralla. Näitä on usein tawattu muinaisten egyptiläisten ruumisarkuista.
Kun woittoisa Caesar marssi Roomaan mukanaan joukko kumpaiseenkin sukupuoleen kuuluwia germanilaisia wankeja, ihastuiwat ylhäiset roomalaiset naiset muukalaisten waaleihin kiharoihin ja hiuspalmikoihin niin pahoin, että he heti paikalla halusiwat hankkia itselleen waaleat hiukset. Ensin käytettiin waaleita tekotukkia, mutta wähän ajan kuluttua alettiin keksiä erinäisiä wäriaineita, joiden awulla hiukset saatiin waaleiksi. Useat muinaisroomalaiset kirjailijat puhuwat sellaisista wäriaineista.
Wenetsian naisilla oli kuudennellatoista wuosisadalla erinäisiä reseptejä hiusten wärjäämistä warten. Siihen aikaan oli waalea tukka jälleen tullut muotiin ja mustan tukan wärjäämiseksi kullankeltaiseksi, jota wäriä aina saa ihailla sen aikuisissa tauluissa, käytettiin merkillistä sekoitusta damaskoloisesta saippuasta ja alunasta, joita keitettiin wedessä. Tätä sekoitusta oli käytettäwä päiwittäin useiden wiikkojen kuluessa, mutta toiwotun lopputuloksen saawittamiseksi oli hiukset wielä asetettawa neljäksi tunniksi päiwässä helteisen päiwäpaisteen waikutuksen alaisiksi. Tämä kaunistus- tai oikeastaan walkaisutapa näyttää olleen kaikkea muuta kuin hupainen, mutta tunnetaanhan, että nainen woi kärsiä melkeimpä waikka mitä kunhan wain hänen kauneutensa siitä lisääntyy.
Nykyaikainen tiede on onneksi keksinyt mukawampia, parempia ja waikuttawampia keinoja hiusten wärjäämiseksi ja erittäinkin on huomattawa, että wärjääminen nykyaikaan käy monin kerroin nopeammin. Kastanjanwärinen tukka, jossa wielä on loistawia wiwahduksiakin, saadaan aikaan eräänlaisella pulwerilla, jota lämpimässä kääreessä pidetään hiuksilla neljän tunnin aika.
Jo muinaisina aikoina käyttiwät kaunottaret monenlaisia salwoja, jauheita, wärejä, kosmetisia aineita ja hajuwesiä luonnollisen sulonsa lisäämiseksi. Bysantiumin ja Roomna naiset poistiwat huolellisesti kaikki karwat kaswoistaan ja käsiwarsistaan ja esiintyiwät yleensä wärjätyin hiuksin ja maalatuin kaswoin. Usein meniwät he wieläkin pidemmälle: he puuteroiwat tukkansa kullanwärisellä jauheella silloin kun he halusiwat esiintyä waaleatukkaisina tai sinisellä jauheella silloinkun musta hiusten wäri oli muodissa.
Itämaiset naiset owat aina käyttäneet ja käyttäwät wieläkin kaikenlaatuisia kosmetisia aineita lisätäkseen kauneuttaan tai parantaakseen ulkomuotoaan, jos luonto on heitä äitipuolen tawoin kohdellut. Köyhinkin arabialaisnainen maalaa kolalla silmänalusensa mustiksi, jotta silmät näyttäisivät suuremmilta.
Keskiaikana ja wielä kauan sen jälkeenkin - 16:nella ja 17:nellä wuosisadalla - oli tawallista, että Europan ylhäiset naiset käyttiwät kaikenmoisten ihmetohtorien apua kauneutensa lisäämiseksi. Kalliista hinnasta myiwät nämä keinottelijat herkkäyskoisille naisille "konnenswesiä" ja "kauneuseliksiirejä", mitä ei kuitenkaan estänyt naisia sen ohessa omin päinsäkin käyttämästä poskimaaleja, puuteria ja kaikenmoisia hywänhajuisia salwoja. Siihen aikaa noltiin siinä uskossa, että wesi turkemee ihon, erittäinkin sen sileän pinnan ja hienouden, jonka wuoksi naiset luonnollisesti pesiwät kaswonsa mahdollisimman harwoin. Nykyajan nainen on onneksi tässä suhteessa hieman järkewämpi, waikka tosin wieläkin on naisia, jotka ajattelewat: "ersin tosin ei yksin sitä aikaan saa", jonka vwuoksi weden apuna käytetään kaikenlaisia lisiä kosmetikan tawattoman rikkaasta aarreaitasta.
Keskiajan kalkkimaalaukset.
Aamulehti 129, 8.6.1909
Pyhän Maarian kirkon korjauksessa on tehty mieltäkiinnittäwiä löytäjä, joista erikseen täytyy mainita alkuperäiset kalkkimaalaukset, joita on löydetty kahdesta eri kohdasta, edellinen 1,600 luwulta, toinen keskiajan alkupuolelta. Omituiset keskiaikaiset maalaukset, jotka muistuttawat niitä, joita on tawattu Nousiaisten kirkossa, owat maalattu tiilipunaisella wärillä. Maalaukset owat todennäköisesti 14-wuosisadalta.
Pyhän Maarian kirkon korjauksessa on tehty mieltäkiinnittäwiä löytäjä, joista erikseen täytyy mainita alkuperäiset kalkkimaalaukset, joita on löydetty kahdesta eri kohdasta, edellinen 1,600 luwulta, toinen keskiajan alkupuolelta. Omituiset keskiaikaiset maalaukset, jotka muistuttawat niitä, joita on tawattu Nousiaisten kirkossa, owat maalattu tiilipunaisella wärillä. Maalaukset owat todennäköisesti 14-wuosisadalta.
Water Turned to Blood.
Popular Science, joulukuu 1873
From the French of Dr. N. Joly.
From the remotest antiquity the red color sometimes observed in water appears to have attractged attention. In all ages there have been stories of rains of blood, and of rivers changed to blood, and these phenomena have given riseto the most ludicrous explanations, and to the most ridiculous apprehensions. In Exodus (vii., 20, 21), we read: "All the waters that were in the river were turned to blood. And there was blood throughout all the land of Egypt." Homer speaks of the dews of blood which preceded the Trojan War, and those which foreboded the death of Sarpedon, king of the Lycians. Pliny in his "Natural History" (book ii., c. xxxvi.) tells of a rain of milk and blood which fell at Rome in the consulship of M. Acilius and C. Portius. Finally, the historian Livy mentions a rain of blood which fell in the Forum Boarium. In times much nearer to our own, phenomena of this kind have been observed at various points in Europe, producing ridiculous alarms, and even leading to actual seditions.
The cause, or causes rather, of these so-called rains of blood are now well understood. Every one knows that they are to be attributed either to mineral particles diffused through the air strata which are traversed by the rain, or to the dejections of certain moths in their last metamorphosis, or to the remains of infusoria carried up by the winds. But the ignorant multitude continue still to believe in rains of blood, and bow down blindly before so-called miracles which have no existence save in the wild fancies of those who regard them as articles of faith.
Red water of the Salt-Marshes, taken from the surface.
The same after it has been allowed to rest. (The infusoria have risen to the surface. )
We are not concerned now with these errors and superstitions, on which modern science has pronounced its verdict; we propose rather to consider some well-attested facts, the causes of which leave no room for doubt or ambiquity. It is now ascertained beyond question that, where fresh water wears a peculiar tinge, this coloring is due to the presence of infusoria (Euglena viridis. E. sanguinea, Astasia hæmatodes), or to microscopic vegetation (Oscillatoria rubescens, Sphæroplea annulina), or to minute entomostraca (Daphnia pulex, Cyclops quadricornis).
The waters of the sea may also be tinged in a similar way. Thus, in 1820, Scoresby found that the blue or green tinge of the Greenland Sea was caused by an animalcule allied to the medusæ. Of these he counted 64 in a cubic inch; this would be in a cubic foot 110,392, and 23,888,000,000,000 in a cubic mile. According to Arago, the long and sharply-defined streaks of green in the polar seas include myriads of medusæ, whose yellow color, added to the bue of the water, produces green. Off Cape Palmas, on the Guinea coast, Captain Tuckey's ship appeared to be sailing through a milky sea. The cause of the phenomenon was the multitude of animals floating at the surface, and masking the natural tint of the water. The carmine-red streaks which various navigators have sailed through on the high-seas are produced in the same way. In 1844 Messrs. Turrel and Freycinet saw the Atlantic Ocean, off the coast of Portugal, of a deep-red color, owing to the presence of a microscopic plant of the genus Protococcus (P. Arlanticus). This color was duffysed over an area of no less than five square miles. M. Montagne, who has described the alga which produced this phenomenon, closes his memoir in these words: "When we reflect that, in order to cover one square millimetre (0.03937 inch), we must have 40,000 individuals of this microscopic alga, we are filled with amazement on comparing the immensity of such a phenomenon with the minuteness of the cause which produces it."
Monas Dunalii Magnified. a. Very young individuals, colorless. b. Individuals not yet full grown, colored green. c. Adults very deep red. d. Adults of lighter red.
Monas Dunalii, dead, and of globular shape.
As for the waters of the Red Sea, the periodic reddening which distinguishes them is caused by the presence of a confervoid alga which naturalists have called Trichodesmium erythræum. Finally, Pallas tells of lake in Russia, called Malinovoé-Ozéro, or Raspberry lake, because its briny water and the salt made from it are red, and have the odor of Violets.
The coloration of the Mediterranean salt-marshes, a phenomenon long known to the salt-makers of Languedoc, but first studied by savants in 1836, and by me in 1839, has also been explained in various ways more or less near the truth. 1 The sauniers (salt-makers) of Languedoc give the names of tables, partennements, and Pièces maîtresses to the various compartments into which the sea-water is passed as it arrives at different degrees of salinity.Messrs. Audouin, Dumas, and Payen, of the Institute, have attributed it to the Artimia salina, a minute branchiopod crustacean, which in fact swarms in the Partennements1, where the saltness of water is far below the degree of saturation requisite for the precipitation of salt crystals, but is of much rarer occurrence where the water, being very highly concentrated, assumes at times a blood-red color. Messrs. A. de Saint-Hilaire and Turpin have supposed the real cause of this strange coloration to be certain microscopic plants, of very simple organization, which they call Protococcus sanguineus ans Hæmatococcus kermesinus. This, too, was the opinion of M. F. Dunal, who had studied the rubefaction of the water of our salt-marshes before St. Hilaire and Turpin. As I was at that time employed in teaching Natural History in the Royal College of Montpellier, where I had among my pupils several youths who have since become distinguished masters themselves (Louis Figuier, Amédée Courty, and Henri Marès, for instance), I too had a desire to study the curious phenomenon of the reddening of water, and to this end I visited the salt-works of Villeneuve, two or three miles distant from Montpellier. The water there was then of a very decided red color. I collected on the spot some samples of the water which looked most like blood, and also of water which, being less briny than this, was also of a fainter red color. Under the microscope the water collected in the various compartments exhibited myriads of minute creatures, with oval or oblong bodies, often compressed in the middle, but sometimes cylindrical. Very young individuals were colorless, those a little older were greenish, and the adult were of a deep red. The mouth had the form of a conical prolongation, and was retractile; they were eyeless, and the stomach and anus could not be clearly made out.
Dead Monads, colorless.
Part of the Digestive Tube of Artemia Salina, in which are seen (a, a) dead but not digested monads, and (b, b) cubical salt-crystals.
With a high-power microscope I was able to see in the anterior part of these supposed protococci two long, flagelliform, and perfectly transparent processes which they kept in rapid motion, and by means of which they swam about in the drop of liquid spread out on the slide of my instrument. There was no longer room for doubt. The protococci and hæmatococci of Messrs. Dunal, St.-Hilaire, and Turpin, were animals - true monads, and I gave them the name of Monas Dunalii, in honor of my preceptor, Prof. Dunal. He was the first to suspect the true cause of the red color of the Mediterranean salt-marshes; but he had only an indistinct insight into the matter. He examined the animalcules only after they were dead, that is, at the moment when they had become globular and motionless, like protococci; and his specimens were dead, because he had filled his vials up to the brim with the water, and then sealed them hermetically. But these little animals must, above all things, have free respiration. Accumulated in immense numbers in a very small quantity of water, with the outer air entirely excluded, they all died while being carried from Villeneuve to Montpellier. They were then taken for protococci, being motionledd and globular. I took precautions against committing this mistake, by only half filling my specimen-tubes, and, better still, by examining the water of the salines on the spot.
Artemia Salina (adult) natural size, and highly magnified. o. Median eye. y,y. Pdunculate eyes. a,e. Antennæ p. Incubatory pouch with eggs. ab.Abdomen. ap. Tail-shaped appendages. c. Digestive tube.
It is a remarkable fact in the history of the Monas Dunalii that, like the Protococcus nivalis, which gives to the snow of the polar regions now a green tinge, anon a red, this animalcule presents, when young, a green tinge, which changes later to brick-red, and then to blood-red.
The degree of concentration of the water has a marked influence on them. On the 1st Octoberm 1839, after the driest summer on record, the liquid in the tables indicated 25° salinity in Baumé's areometer, and it was of so deep a color as to stain a corner of my pecket-handkerchief a blood-red. On October 28th, after twenty-eight days of steady rain, the water in the pièces maìtresses, instead of presenting a purple color, as on the first day of the month, resembled blood with a very large amount of serum, and the monads in it were less numerous, and of a lighter red, although the water was still of 20° salinity.
Finally, we must not omit to state that the monads are very sensitive to light, which they seek with a certain degree of avidity. This may be easily seen by putting a number of these infusoria into a flask two-thirds filled with sea-water. Soon they will be seen to rise to the surface of the liquid, and to crowd together on the side where the light is strongest. If the flask be turned about so as to bring them on the darker side, they soon take their former position again. We must also observe that these animalcules sometimes go sown to the bottom of the tables, and then the coloration of the surface grows fainter, or entirely disappears.
From all this it follows that the red color of the Mediterranean salt-marshes is caused by the Monas Dunalii; but is that animalcule the only cause of the phenomenin? Has not the Artemia salina of Audouin, Dumas, and Payen, also something to do with it? This problem was soon solved. We have first to bear in mind that these little crustaceans are found in far greater numbers in brackish water than in water at its maximum point of concentration, and that in the latter case, indeed, they occur so rarely that their presence may be regarded as in some sort merely accidental. In water of this kind, the artemia appears to be sickly; it evidently languishes in the over-dense medium; it swims about with difficulty, always keeping at the surface. It is more or less of a red color along the line of its digestive canal; but this coloration is secondary thing, and is owing to the monads it has swallowed in water. The latter deposits in their intestine salt-crystals, which may be seen through their transparent envelope, mingled with monads in a state of partial or total digestion.
Far, then, from being the cause of the purple tint of salt-water in its last stage of concentration, the artemia is indebted for its accidental coloring to the Monades Dunalii it takes into its digestive canal, or which settle among the filaments of its branchial feet. This I have demonstrated by keeping colorless artemiæ for a while in water tinged by red monads, or simply by carmine, and so giving them a red color.
But, though the artemia has nothing to do with the coloration of water, it is, nevertheless, a subject of wonder and study for the physiologist. Like several other animals belonging to the great sub-kingdom Articulata (psyche, bee, silk-worm moth), out crustaceans possess the singular privilege of reproducing themselves without being subjectted to the general law of sexual union. Among several thousand artemiæ studied by me, I have not found a single well-defined male individual. The distinguished Genevan naturalist, Carl Vogt, said, the other day, that he had had the like experience. Hence we may conclude that the artemia of our salt-marshes perpetuates its kind by means of virgin females, whose eggs, although deprived of seminal impregnation, are developed in an incubatory sac situated at the base of the maternal abdomen. These produce young artemiæ, which have to undergo amazing metamorphoses before they arrive at a complete resemblance to their parent. The name of parthenogenesis has been bestowed on this singular mode of reproduction by virgin females, independently of commerce with males; oftentimes, the latter do not exist at all, or at least are as yet unknown. In conclusion, we would remark that the eggs of our virgin artemia produce only females, while the unfecundated eggs of the queen-bee produce males, and males only.
- La Nature.
From the French of Dr. N. Joly.
From the remotest antiquity the red color sometimes observed in water appears to have attractged attention. In all ages there have been stories of rains of blood, and of rivers changed to blood, and these phenomena have given riseto the most ludicrous explanations, and to the most ridiculous apprehensions. In Exodus (vii., 20, 21), we read: "All the waters that were in the river were turned to blood. And there was blood throughout all the land of Egypt." Homer speaks of the dews of blood which preceded the Trojan War, and those which foreboded the death of Sarpedon, king of the Lycians. Pliny in his "Natural History" (book ii., c. xxxvi.) tells of a rain of milk and blood which fell at Rome in the consulship of M. Acilius and C. Portius. Finally, the historian Livy mentions a rain of blood which fell in the Forum Boarium. In times much nearer to our own, phenomena of this kind have been observed at various points in Europe, producing ridiculous alarms, and even leading to actual seditions.
The cause, or causes rather, of these so-called rains of blood are now well understood. Every one knows that they are to be attributed either to mineral particles diffused through the air strata which are traversed by the rain, or to the dejections of certain moths in their last metamorphosis, or to the remains of infusoria carried up by the winds. But the ignorant multitude continue still to believe in rains of blood, and bow down blindly before so-called miracles which have no existence save in the wild fancies of those who regard them as articles of faith.
Red water of the Salt-Marshes, taken from the surface.
The same after it has been allowed to rest. (The infusoria have risen to the surface. )
We are not concerned now with these errors and superstitions, on which modern science has pronounced its verdict; we propose rather to consider some well-attested facts, the causes of which leave no room for doubt or ambiquity. It is now ascertained beyond question that, where fresh water wears a peculiar tinge, this coloring is due to the presence of infusoria (Euglena viridis. E. sanguinea, Astasia hæmatodes), or to microscopic vegetation (Oscillatoria rubescens, Sphæroplea annulina), or to minute entomostraca (Daphnia pulex, Cyclops quadricornis).
The waters of the sea may also be tinged in a similar way. Thus, in 1820, Scoresby found that the blue or green tinge of the Greenland Sea was caused by an animalcule allied to the medusæ. Of these he counted 64 in a cubic inch; this would be in a cubic foot 110,392, and 23,888,000,000,000 in a cubic mile. According to Arago, the long and sharply-defined streaks of green in the polar seas include myriads of medusæ, whose yellow color, added to the bue of the water, produces green. Off Cape Palmas, on the Guinea coast, Captain Tuckey's ship appeared to be sailing through a milky sea. The cause of the phenomenon was the multitude of animals floating at the surface, and masking the natural tint of the water. The carmine-red streaks which various navigators have sailed through on the high-seas are produced in the same way. In 1844 Messrs. Turrel and Freycinet saw the Atlantic Ocean, off the coast of Portugal, of a deep-red color, owing to the presence of a microscopic plant of the genus Protococcus (P. Arlanticus). This color was duffysed over an area of no less than five square miles. M. Montagne, who has described the alga which produced this phenomenon, closes his memoir in these words: "When we reflect that, in order to cover one square millimetre (0.03937 inch), we must have 40,000 individuals of this microscopic alga, we are filled with amazement on comparing the immensity of such a phenomenon with the minuteness of the cause which produces it."
Monas Dunalii Magnified. a. Very young individuals, colorless. b. Individuals not yet full grown, colored green. c. Adults very deep red. d. Adults of lighter red.
Monas Dunalii, dead, and of globular shape.
As for the waters of the Red Sea, the periodic reddening which distinguishes them is caused by the presence of a confervoid alga which naturalists have called Trichodesmium erythræum. Finally, Pallas tells of lake in Russia, called Malinovoé-Ozéro, or Raspberry lake, because its briny water and the salt made from it are red, and have the odor of Violets.
The coloration of the Mediterranean salt-marshes, a phenomenon long known to the salt-makers of Languedoc, but first studied by savants in 1836, and by me in 1839, has also been explained in various ways more or less near the truth. 1 The sauniers (salt-makers) of Languedoc give the names of tables, partennements, and Pièces maîtresses to the various compartments into which the sea-water is passed as it arrives at different degrees of salinity.Messrs. Audouin, Dumas, and Payen, of the Institute, have attributed it to the Artimia salina, a minute branchiopod crustacean, which in fact swarms in the Partennements1, where the saltness of water is far below the degree of saturation requisite for the precipitation of salt crystals, but is of much rarer occurrence where the water, being very highly concentrated, assumes at times a blood-red color. Messrs. A. de Saint-Hilaire and Turpin have supposed the real cause of this strange coloration to be certain microscopic plants, of very simple organization, which they call Protococcus sanguineus ans Hæmatococcus kermesinus. This, too, was the opinion of M. F. Dunal, who had studied the rubefaction of the water of our salt-marshes before St. Hilaire and Turpin. As I was at that time employed in teaching Natural History in the Royal College of Montpellier, where I had among my pupils several youths who have since become distinguished masters themselves (Louis Figuier, Amédée Courty, and Henri Marès, for instance), I too had a desire to study the curious phenomenon of the reddening of water, and to this end I visited the salt-works of Villeneuve, two or three miles distant from Montpellier. The water there was then of a very decided red color. I collected on the spot some samples of the water which looked most like blood, and also of water which, being less briny than this, was also of a fainter red color. Under the microscope the water collected in the various compartments exhibited myriads of minute creatures, with oval or oblong bodies, often compressed in the middle, but sometimes cylindrical. Very young individuals were colorless, those a little older were greenish, and the adult were of a deep red. The mouth had the form of a conical prolongation, and was retractile; they were eyeless, and the stomach and anus could not be clearly made out.
Dead Monads, colorless.
Part of the Digestive Tube of Artemia Salina, in which are seen (a, a) dead but not digested monads, and (b, b) cubical salt-crystals.
With a high-power microscope I was able to see in the anterior part of these supposed protococci two long, flagelliform, and perfectly transparent processes which they kept in rapid motion, and by means of which they swam about in the drop of liquid spread out on the slide of my instrument. There was no longer room for doubt. The protococci and hæmatococci of Messrs. Dunal, St.-Hilaire, and Turpin, were animals - true monads, and I gave them the name of Monas Dunalii, in honor of my preceptor, Prof. Dunal. He was the first to suspect the true cause of the red color of the Mediterranean salt-marshes; but he had only an indistinct insight into the matter. He examined the animalcules only after they were dead, that is, at the moment when they had become globular and motionless, like protococci; and his specimens were dead, because he had filled his vials up to the brim with the water, and then sealed them hermetically. But these little animals must, above all things, have free respiration. Accumulated in immense numbers in a very small quantity of water, with the outer air entirely excluded, they all died while being carried from Villeneuve to Montpellier. They were then taken for protococci, being motionledd and globular. I took precautions against committing this mistake, by only half filling my specimen-tubes, and, better still, by examining the water of the salines on the spot.
Artemia Salina (adult) natural size, and highly magnified. o. Median eye. y,y. Pdunculate eyes. a,e. Antennæ p. Incubatory pouch with eggs. ab.Abdomen. ap. Tail-shaped appendages. c. Digestive tube.
It is a remarkable fact in the history of the Monas Dunalii that, like the Protococcus nivalis, which gives to the snow of the polar regions now a green tinge, anon a red, this animalcule presents, when young, a green tinge, which changes later to brick-red, and then to blood-red.
The degree of concentration of the water has a marked influence on them. On the 1st Octoberm 1839, after the driest summer on record, the liquid in the tables indicated 25° salinity in Baumé's areometer, and it was of so deep a color as to stain a corner of my pecket-handkerchief a blood-red. On October 28th, after twenty-eight days of steady rain, the water in the pièces maìtresses, instead of presenting a purple color, as on the first day of the month, resembled blood with a very large amount of serum, and the monads in it were less numerous, and of a lighter red, although the water was still of 20° salinity.
Finally, we must not omit to state that the monads are very sensitive to light, which they seek with a certain degree of avidity. This may be easily seen by putting a number of these infusoria into a flask two-thirds filled with sea-water. Soon they will be seen to rise to the surface of the liquid, and to crowd together on the side where the light is strongest. If the flask be turned about so as to bring them on the darker side, they soon take their former position again. We must also observe that these animalcules sometimes go sown to the bottom of the tables, and then the coloration of the surface grows fainter, or entirely disappears.
From all this it follows that the red color of the Mediterranean salt-marshes is caused by the Monas Dunalii; but is that animalcule the only cause of the phenomenin? Has not the Artemia salina of Audouin, Dumas, and Payen, also something to do with it? This problem was soon solved. We have first to bear in mind that these little crustaceans are found in far greater numbers in brackish water than in water at its maximum point of concentration, and that in the latter case, indeed, they occur so rarely that their presence may be regarded as in some sort merely accidental. In water of this kind, the artemia appears to be sickly; it evidently languishes in the over-dense medium; it swims about with difficulty, always keeping at the surface. It is more or less of a red color along the line of its digestive canal; but this coloration is secondary thing, and is owing to the monads it has swallowed in water. The latter deposits in their intestine salt-crystals, which may be seen through their transparent envelope, mingled with monads in a state of partial or total digestion.
Far, then, from being the cause of the purple tint of salt-water in its last stage of concentration, the artemia is indebted for its accidental coloring to the Monades Dunalii it takes into its digestive canal, or which settle among the filaments of its branchial feet. This I have demonstrated by keeping colorless artemiæ for a while in water tinged by red monads, or simply by carmine, and so giving them a red color.
But, though the artemia has nothing to do with the coloration of water, it is, nevertheless, a subject of wonder and study for the physiologist. Like several other animals belonging to the great sub-kingdom Articulata (psyche, bee, silk-worm moth), out crustaceans possess the singular privilege of reproducing themselves without being subjectted to the general law of sexual union. Among several thousand artemiæ studied by me, I have not found a single well-defined male individual. The distinguished Genevan naturalist, Carl Vogt, said, the other day, that he had had the like experience. Hence we may conclude that the artemia of our salt-marshes perpetuates its kind by means of virgin females, whose eggs, although deprived of seminal impregnation, are developed in an incubatory sac situated at the base of the maternal abdomen. These produce young artemiæ, which have to undergo amazing metamorphoses before they arrive at a complete resemblance to their parent. The name of parthenogenesis has been bestowed on this singular mode of reproduction by virgin females, independently of commerce with males; oftentimes, the latter do not exist at all, or at least are as yet unknown. In conclusion, we would remark that the eggs of our virgin artemia produce only females, while the unfecundated eggs of the queen-bee produce males, and males only.
- La Nature.
1.2.10
Yhtä ja toista läheltä ja kaukaa.
Turun Lehti 27, 7.3.1885
Nuoret tytöt Bretagnessa Ranskassa tulewat määrättyinä juhlapäiwinä tansseihin punaisissa hameissa, joissa on walkoisia ja keltaisia juowia. Juowat osoittamat tytön myötäjäisten suuruutta. Walkoinen juowa merkitsee hopeata ja osoittaa 100 markan korkoja; keltainen juowa merkitsee kultaa ja osoittaa 1000 markan korkoja. Warsin mukawa tapa sulhasille.
Nuoret tytöt Bretagnessa Ranskassa tulewat määrättyinä juhlapäiwinä tansseihin punaisissa hameissa, joissa on walkoisia ja keltaisia juowia. Juowat osoittamat tytön myötäjäisten suuruutta. Walkoinen juowa merkitsee hopeata ja osoittaa 100 markan korkoja; keltainen juowa merkitsee kultaa ja osoittaa 1000 markan korkoja. Warsin mukawa tapa sulhasille.
Mainos: Don't buy New Corsets - dye them a beautiful Pink
Cleanses and Colors Instantly
RIT will keep your silk or cotton corsets immaculately clean. You can dye them a beautiful pink, flesh or rose - not necessary to remove laces, trimmings or gasters.
The pattern in brocaded silk corsets is brought back just like new. Cotton corsets, too, can be kept dainty and fresh. RIT will preserve the color and cleanliness of your corsets, insuring longer wear and economy.
Nothing could be simpler. RIT washes and dyes in one operation - Quickly - Easily - No boiling. Restored Faded Colors. Dyes Silk - Cotton - WOol.
Will not stain hands, streak or injure fabric. Fast Colors.
Use RIT on your blouses, lingerie, light silk gowns, silk gloves, stockings, silk sweaters, infants wear, light-weight draperies and portieres.
RIT is now manufactured in Light and Dark Colors, Flesh, Pink, Salmin Pink, Red, Yellow, Canary Yellow, Golden Yellow, Orange, Lavender, Mustard, Light Blue, Light Green, Tan, Bworn, Yankee Brown, Light Grey, Navy Blue, Old Rose, Emeral Green, Olive Green, Dark Green, Dark Blue, Victory Blue, Taupe, Battleship Grey.
(mainos, maaliaineet)
Color-Blindness
Popular Science, joulukuu 1878
Color-Blindness is, according to M. Favre, consulting physician of one of the great railways of France, a frequent result of the abuse of alcohol and tobacco. He would interdict to every railway-man holding a responsible position the use of tobacco or alcohol in any form, because they tend to impair not only the power of discriminating colors, but also that of estimating distances and of perceiving objects.
Color-Blindness is, according to M. Favre, consulting physician of one of the great railways of France, a frequent result of the abuse of alcohol and tobacco. He would interdict to every railway-man holding a responsible position the use of tobacco or alcohol in any form, because they tend to impair not only the power of discriminating colors, but also that of estimating distances and of perceiving objects.
Persian Hair-Dye.
Popular Science, joulukuu 1878
The practice of dyeing the hair is very much in use among the Persians, who mostly employ the plant henna for this purpose. According to Dr. Tholozan, the private physician of the shah, the powdered leaves of the plant are made into a paste with hot water and then applied to the head, the hair, and the nails. This is done in a vapor-bath. This first application lasts an hour and a half to two hours, and then the parts are freely washed in water. The henna gives an orange-red color, very beautiful on a white beard, so that many old men use it. To change the reddish color of hair into a fine, lustrous black, the parts are coated, at the same sitting, with a paste formed of another powder - that from the leaves of a kind of indigo-tree cultivated in Persia. This is called reng; it remains applied about two hours. The henna gives different colors according as it acts on white, fair, or dark hair. It alters very quickly in moisture, and loses its properties in long sea-voyages. Experience seems to have proved that it gives suppleness to hair, but it causes it to whiten prematurely. Fair-haired people in Persia always color their hair black, but the black is not so intense as that produced in persons of dark complexion. Skin reddened and blackened with the two pastes soon regains its natural color on being washed with soap and rubbed with the fingers, whereas the dye adheres firmly to the hair, which it penetrates. Reng is sometimes used alone, and gives a blue-violet color.
The practice of dyeing the hair is very much in use among the Persians, who mostly employ the plant henna for this purpose. According to Dr. Tholozan, the private physician of the shah, the powdered leaves of the plant are made into a paste with hot water and then applied to the head, the hair, and the nails. This is done in a vapor-bath. This first application lasts an hour and a half to two hours, and then the parts are freely washed in water. The henna gives an orange-red color, very beautiful on a white beard, so that many old men use it. To change the reddish color of hair into a fine, lustrous black, the parts are coated, at the same sitting, with a paste formed of another powder - that from the leaves of a kind of indigo-tree cultivated in Persia. This is called reng; it remains applied about two hours. The henna gives different colors according as it acts on white, fair, or dark hair. It alters very quickly in moisture, and loses its properties in long sea-voyages. Experience seems to have proved that it gives suppleness to hair, but it causes it to whiten prematurely. Fair-haired people in Persia always color their hair black, but the black is not so intense as that produced in persons of dark complexion. Skin reddened and blackened with the two pastes soon regains its natural color on being washed with soap and rubbed with the fingers, whereas the dye adheres firmly to the hair, which it penetrates. Reng is sometimes used alone, and gives a blue-violet color.