16.7.22

Cochineal.

The Cyclopædia
or, Universal Dictionary of Arts, Sciences, and Literature.
By Abraham Rees
(Rees's Cyclopædia)
Longman, Hurst, Rees, Orme and Brown
London, 1819
COCHINEAL, Coccus cacti, Linn.

See COCCUS cacti.

The substance known in commerce by the name of cochineal which is the most precious of all our dyeing drugs, affording the scariet crimson, and many other valuable dyes, and from which the finest carmine is generally prepared, is in the form of hemispherical thrivelled grains, about an eighth of an inch long, of a deep reddish-purple colour, and covered more or less with a white down: they are very light, and easily rubbed to powder between the fingers. The Spanish merchants distinguish at least two kinds, the best, or domesticated, called grana fina, or fine grain; and the wild, or grana sylvestra; of these, the latter is not more than half the fine of the former, and is covered with a much longer down; on which account it always bears a much lower price in the market.

The cochineal insect is a native of Mexico, and was in common use among the inhabitants as a dyeing drug when the Spaniards first came into the country; since that period its use has become more and more general, not onlyin Europe, but in various parts of Asia, and, as almost the whole of this valuable commodity is still raised in Mexico, Peru, and the adjoining Spanish settlements, it becomes every year an objet of more sedulous cultivation than before.

The best and finest cochineal, and, indeed, by far the greatest proportion of that consumed in Europe, is brought to us from Mexico. The principal districts where it is bred are Oaxaca, Tlascala, Chulula, Neuva Gallicia, and Chiapa, in New Spain, but it is in Oaxaca that the greatest quantities are produced, where the cultivation of this little insect has long given employment and been an object of commerce to the native Mexicans. According to U1loa it is likewise produced at Hambatia, Loja, and Tucuman in Peru. It has been introduced into St. Domingo, and the Brasils also.

The wild cochineal (grana sylvestra) feeds upon most of the species of cacti that are natives of Mexico, requires no particular care or attendance, and may be gathered six, times in the year, there being so many generations of this insect in a twelvemonth: the time of collecting the cochineal is just before the female produces its young, as the animal perishes immediately afterwards. The cultivated cochineal (grana fina), called also Mostique from a Mexican province of that name, is the product of slow and progressive improvement in the breed of the wild cochineal, and is found only in the gardens and plantations of Mexico, where, provided with its choicest food and sheltered from the inclemencies of the seasons, it attains nearly double its original size. This feeds only on one species of cactus, the cocheniliser or nopal, and produces only three broods in the year. Its management is simple, but requires incessant attention. At the third annual gathering of cochineal, a certain number of females are left adhering to branches of the nopal, which are then broken off and kept carefully under cover during the rainy season; when this is over, the stock of cochineal, thus preferred by each cultivator, is distributed over the whole plantation of nopals, where they soon multiply with great rapidity. In the space of two months, the first crop is gathered by detaching the insects with a blunt knife, after which they are put into bags, and dipped in hot water to kill them, and finally dried in the sun, by which they lose about two-thirds of their weight. This kind is also much more abundant in colouring matter, in which, indeed, its superiority over all other kinds consists; since, from the experiments of the French academicians, the grana sylvestra of Mexico, and the cochineal of St. Domingo, afforded colours equal in brilliancy, though not in quantity, to the meltique or grana fina. The cochineal of Vrasil also, according to Bancroft, is not inferior in quality to the fine grain of Mexico, though it contains only half the quantity of colouring matter. The proportion of coloring matter contained in equal portions of the cultivated cochineal, of the wild cochineal of Mexico, and of an inferior kind from St. Domingo, is, according to Berthollet, as eighteen, eleven, and eight.

In time of peace the cochineal of Mexico is almost exclusively sent from Vera Cruz to Cadiz, whence it is diffused all over Europe; but in time of war a contraband trade is carried on to various parts of America and the West Indies, whence this country is chiefly supplied.

The quantities of fine cochineal imported into Spain in the years 1788, 1789, and 1790, amounted to 11,000 bags, weighing 200lb. each, and making together 2,200,000lb. weight; and between the 1st of January, 1791, and the 1st of October in the same year, the importations had exceeded 2000 bags. From accurate calculations it appears that the average quantity of fine cochineal, annually consumed in Europe, amounts to about 3000 bags, or 600,000lb. weight, of which 1200 bags, or 240,000lb. may be considered as the present annual consumption of Great Britain: a greater quantity comes, indeed, into the kingdom, but the surplus is again exported to other coun-tries. The attention of the EMI. India company has been lately directed to the production of this insect, though hitherto with but partial success. It is very small, not very abundant in colouring matter, and inferior in quality to that of New Spain. It is used only for the coarsest goods, and sold from 3s. 6d. to 5s. per pound. From 8 to 10,000 lb. are annually brought to this country. See COCCUS CACTI.

Cochineal retains some traces of its original form, even in its dried state; and though Europe for a long time considered it as the seeds of an Indian plant, it is easy to select from a parcel some insects in which the round or convex back, with small transversal furrows and flat belly, are readily discovered. Its external or commercial characters differ considerably; it is distinguished by the dealers chiefly by its colour and size.
1. Time large black, or deep purple, of bright hue, is preferred to all others. Its value decreases with its size and
2. The large silver grey, though held in less estimation here, is, in general, equal to the former. It is preferred by the German buyers, to whom it is sold somewhat lower than the preceding, and from which it differs only in the less removal of that white farinaceous powder with which the insects, in their natural state, are covered.
3. The small white or silvery cochineal is held in little estimation, and sold at very inferior prices. Cochineal dust is sometimes found in the market, and also the small, or mutilatedgrains, separated by the sieve from the larger, and known by the name of Granilla. All these kinds are liable to adulteration with various subilattees, but more especially with a paste, which is sometimes managed so dexterously as to deceive the best judges, without very particular examination.

The use of cochineal was known to the Mexicans before the invasion of the Spaniards. It was the beauty of its colour, as displayed in their furniture, ornaments, and cotton cloth, which first directed the attention of their conquerors towards this precious insect. From the reports made to the Spanish ministry on this subject, orders were issued to Cortes, in the year 1523, to take measures for multiplying this valuable commodity, and considerable quantities, raised by the industry of the natives, were soon afterwards sent to Spain. Although it was for some time supposed to be the berry or seed of a vegetable; it was at length, however, "ascertained that these grains were the females of a particular species of insect, called by naturalists "Coccus cacti," and of the same genus as the "kermes" (Coccus ilicis, Linn.). See Coccus.

It is probable that alum was the only mordent used for fixing the cochineal dye for, some time after its introduction into Europe. The Mexicans also employed the same substance, as appears from the testimony of the Spanish Herrara. The colour afforded by cochineal with the aluminum mordants is crimson, and indeed, previous to the discovery of the use of tin, this seems to have been the only colour analogous to scarlet that was known. Drebbel, or, as some say, Kuster, or Keffler, a German chemist, first discovered the effect of the solution of tin in exalting the cochineal dye. He brought his secret to London about the year 1643; and the first establishment for dyeing scarlet in this country appears to have been at Bow, whence it obtained, for a long time, the name of the Bow-dye. The process was known in Holland soon after the discovery was made, and in France also, where it was practised the famous Gobelins, who received information from a Flemish painter, to whom it had been communicated by Bolter himself. For the details of this operation, and the successive improvements down to the present time, we refer our readers to the article SCARLET-Dye.

Cochineal, when thoroughly dry, if kept in a dry place, and in close packages, may be preferred many years without alteration. Hellot tried some 130 years old, and found it equal in quality to the fresh insects.

The colouring matter of cochineal may be extricated either by water or alcohol. The alcoholic solution is of a deep crimson colour, and, on evaporation, leaves a transparent residuum of a deep red, which has the appearance of a resin and which affords by distillation the products of animal substances. The aqueous solution or decoction of cochineal is of a crimson colour, bordering on purple, when viewed by transmitted lights; and this, if evaporated slowly to the continence of an extract, and then digested in alcohol, communicates to this menstruum a colour similar to the preceding spitituous solution, a residuum of the colour of wine-lees being left behind. This affords, by destructive distillation, the products of animal substances.

The aqueous decoction of cochineal, if mixed with a little sulphuric acid, assumes a red colour, inclining to yellowish, or orange hue, and a small quantity of a fine red precipitate is thrown down. Muriatic acid produces nearly the same change of colour, but occasions no precipitate. A solution of tartar, and, indeed, all acids, change the cochineal decoction to a yellowith red, and a small quantity of a pale red precipitate is slowly deposited: the supernatant liquor is yellow, but on the addition of a little alkali it becomes purple, the precipitate being at the same re-dissolved. Alum brightens the colour of the infusion and gives it a redder hue; a crimson precipitate is deposited, and the supernatant liquor retains a similar tinge. A mixture of alum and tartar produces a brighter and more lively colour, inclining to yellow; and a precipitate is thrown down, but mach paler, and less in quantity than where alum alone is used. Nitro-muriate of tin throws down a crimson sediment in considerable abundance, not a particle of colouring matter remaining in the liquor.

On adding a solution of tartar, and afterwards of tin, to the infution of cochineal, a rose-coloured precipitate is formed more quickly than in the preceding experiment. The supernatant liquor retains a tinge of yellow.

Cochineal, boiled with half its weight of tartar, affords a decoction more inclining to red, and not in deep as when boiled with water only. With the solution of tin, however, it affords a more abundant precipitate, and of a more intense colour. The extraction of the colouring particles of cochineal, therefore, is favoured by the action of tartar, though the liquor appear much paler than the simple aqueous solution.

The sulphate of iron forms a brown coloured purple, or brownish violet precipitate; and the supernatant liquor is of a dilute yellowish brown. The sulphate of zinc forms a deep purple, or deep violet; and the acetate of lead a purple-violet precipitate, less deep than the preceding; the liquor in both cases being perfectly colourless.

The sulphate of copper changes the colour of the decoction to violet, and a small sediment of the same colour slowly subsides.

Berthollet remarks a distinctive character in the colouring matter of cochineal, compared with that of madder, treated with the same re-agents. Both species of colouring matter acquire a yellow colour from acids; but if the particles of cochineal be separated by a substance, which precipitates them from the acid liquor they are dissolved in, they re-appear with their natural colour little changed, whilst those of madder retain a yellow or fawn-coloured hue. On this account the solutions of tin, which retain a great excess of acid, and are so eminently useful in exalting the colour of Cochineal, are used with little success with madder; probably as Mr. Berthollet supposes, because the combination of the oxide of tin with the colouring matter of madder, retains a larger portion of acid than it does when combined with the colouring matter of cochineal.

We have before ohserved, that the natural colour of cochineal is crimson, and that, till the discovery of the use of the solution of tin, the colour now called scarlet was un-known. The production of this colour was ascribed to the nitro-muriate of tin only, and more especially to the action of the nitrous acid of that solution, with little or no reference to the agency of the tartar, which was always employed in the operation. We are indebted to Bancroft for the correction of this error, and for a series of experiments on the action of other metallic and earthy solutions, with the colouring matter of cochineal on woollen.

From there experiments it appears, that cochineal, with the nitro-muriate of tin, or common dyers' spirits, produced a crimson only, but with the addition of tartar a good scarlet.

Cochineal, with a solution of tin in muriatic acid, dyed a beautiful crimson, and with a solution of that metal, by a mixture of tartar and muriatic acid, a beautiful scarlet.

Cochineal, with tin calcined by the long-continued action of sulphuric acid, dyed a salmon colour, and, with a recent solution of tin, a reddish salmon colour, inclining a little to the crimson. A solution of tin, in equal parts of nitric and sulphuric acids mixed; afforded a similar colour.

Tin, dissolved by the pure acid of tartar, dyed with cochineal a very beautiful scarlet, inclining a little to the aurora.

Tin very readily dissolves by pure citric acid, and even by lemon juice; and the solution, newly made, dyes with cochineal a most beautiful scarlet, inclining, like the preceding, a little to the aurora. The citric acid with tin acts, at least as efficaciously as that of tartar, in yellowing the cochineal crimson; nothing, says Dr. Bancroft, can exceed the beauty of scarlet dyed with the citrate of tin.

The solution of tin in vinegar-afforded a scarlet inclining a little to the crimson.

The phosphate of tin produced an aurora, and the fluate of tin a very good scarlet.

With other bases cochineal gave the following colours to woollen:

With nitro-muriate of platina, a red, and of gold a reddish brown.

With nitrate of silver a dull red, and with muriate of silver a lively reddish orange.

With the acetate of lead, a purple, inclining to violet; and with nitrate of lead, a delicate lively colour, between the red and Cinnamon, but inclining most to the former.

With the sulphate, nitrate, muriate, and acetate of iron, cochineal produces a dark-violet, and even a full black, when employed in sufficient quantity.

All the preparations of copper appear to debase the colouring matter of cochineal, as do those of mercury in a still greater degree; most of these, whilst they degrade the colour, seem to annihilate a portion of it.

With the nitrate and muriate of zinc, and various solutions of bismuth, cochineal produces different shades cf lilac. Cobalt and nickel also afford various shades of lilac and purple: The sulphate of manganese an orange, and the nitrate of manganese a colour resembling a madder red.

It has been before observed, that, with the aluminous mordants, cochineal affords its natural colour, or crimson. Dr. Bancroft has also examined the effects of other earthy solutions.

Lime-water, with cochineal, dyes a purple, which took but slowly, and required long boiling.

Sulphate of lime a full dark red, and nitrate of lime a lively red, approaching to scarlet, and muriate of lime a purple.

The solutions of barytes and of magnesia, afforded various shades of lilac, and even the solution of silex in caustic alkali, precipitated by the addition of an acid, affords a full rich pleasing purple, which proved sufficiently durable.

The foregoing experiments repeated on silk gave less advantageons results. Cochineal, indeed, with the aluminous basis, dyes the crimson colour as well and as durably on silk as on wool. The modes of producing this are well known, and will be treated of hereafter, but in general, with the other earthy and metallic bases, cochineal produced similar but much paler colours than on wool.

The little disposition manifelted by the colouring matter of cochineal to unite with cotton, and the celebrated experiment of Mr. Dufay to illustrate this, are well known. He caused a piece of cloth to be manufactured with a woollen web and cotton woof, and having subjected it to the ordinary process of dyeing scarlet, found that the wool had taken a most beautiful scarlet, whilst the cotton remained perfectly white. Subsequent experiments have shown that this effect arises not from the total want of affinity between the colouring particles of cochineal united to tin, and the fibres of cotton, but from a striking and powerful difference in the force with which the colouring matter is attracted by the two substances. When cotton alone is subjected to the same process, it takes a scarlet colour more slowly indeed, and paler than that imbibed by woollen, yet sufficient to prove its disposition to such union, when not ccounteracted by more powerful affinities. When cotton and wool, however, are jointly subjected to the operation of scarlet dyeing, the latter, by its strong attraction, draws, and exclusively appropriates to itself, all the colouring matter in the vessel before the cotton has had time to engage any part of it. It is owing to this weaker attraction between the fibres of cotton and the scarlet dye, that this latter is so much less permanent on cotton than on wool; and it is also from this want of sufficient attraction that the cochineal colour is found to take most beneficially on cotton, when the basis has first been applied separately.

Cochineal is sometimes used by calico printers in topical dyeing, but more frequently in the preparation of those colours for the pencil, which are described under the article Colour making.

The mordants used for cochineal are those employed with Madder. The acetate of iron, or iron liquor for black, diluted solutions for various shades of purple or lilac, and mixtures of the acetates of iron and alumine for chocolates, blooms, &c. &c.

With the common aluminous mordant, printed and rinsed off the same as for madder red, cochineal affords a bright and beautiful crimson. It is, however, much less fixed than madder, and cannot support repeated washing and exposure. It is applied chiefly on line cloth and delicate muslins, when the solidity of the colour is oftentimes an object of less consideration than its beauty. An addition of one-tenth, or fifteenth, of galls to the cochineal, gives it greater stabipity, but this permanency is gained at the expence of its lustre. The fine crimson disappears, and the colour approaches more to the red or middle hue. An advantage attending the use of cochineal, is its little effect on the white or unprinted part of the cloth, which acquires no stain in the dyeing, but what is completely removed by simple washing, or, in some particular cases, by very gentle branning. From two to three ounces of cochineal, according to the fulness of the pattern, are sufficient for a piece of light ground. The pale delicate crimson grounds, with white objeats, require from four to five ounces. It must be finely ground, and inclosed in a linen or cotton bag, suspended in the dye-copper, from whence it can be occasionally taken and squeezed or wrung, for the more complete extraction of the colour.

In dyeing with cochineal, the value of this drug renders every precaution for economizing its use indispensably necessary, and a considerable saving is made by diminishing as much as possible the quantity of the dye liquor. It is well known, that colouring matter of any kind, held in solution in the dye-copper, can only be exhausted to a certain degree, even by fresh and undyed goods; there is a certain point at which the affinity, of the water for colouring matter becomes equal to that of the strongest mordants, and all that is thus retained may be considered as totally lost, except when fresh portions of colouring matter are added to the already exhausted liquor, and the operation of dyeing again renewed, in which case the loss is inversely as the number of successive operations performed in the same liquor. In dyeing with cochineal, therefore, no more water should be used than is barely sufficient to cover the goods when pressed down close into the copper, with a stick as they come over the winch, and three successive dyeings, at least, should he passed through the same liquor before it is let off, and the copper replenished with fresh water. Long continued heat has a tendency to injure the cochineal crimson, and incline it too much to the purple hue; each dyeing, therefore, should be withdrawn shortly after it has attained the boiling point. The first sets may be boiled three minutes; the second, one; the third set may be kept five or six minutes at the boil, if it consists of darker colours, such as chocolates, dark purples, &c.; but if crimsous, the colour, without boiling, will incline very much to the purple hue, and be much inferior to the first, and even to the second sets. On this account it is proper, when the work will admit of it, to dye the pale crimson grounds first, follow after with the stronger light grounds, and, lastly, with the darker colours above-mentioned.

The use of tin vessels in dyeing scarlet or woollen, (where the acid solutions used in that operation render them indispensably necessary) has induced many calico printers to employ them in dyeing cotton, where no acid solution is present, and where the good effects of tin may be supposed not to apply. It is certain, however, that the hue of the pale and delicate crimson grounds produced in a tin vessel is much superior to that produced in copper, and the cause of this difference is satisfactorily explained by the experiments of Mr. Thomson. From these experiments, which will be more fully detailed in another part of this work, it appears that the colouring matter of cochineal possesses very distinct acid properties.

Turnings of pure soft iron digested in a strong decoction of cochineal were dissolved, with disengagement of hydrogen gas. The solution, at first purple, gradually acquired a more intense colour, approaching to black. Exposed to the atmosphere, it gradually absorbed oxigen, and let fall a black precipitate. It communicated to cloth a dark grey or purple colour, which was not removed by washing. With tin the decoction of cochineal formed a beautiful crimson solutien, and, with copper, a dull crimson inclining to purple; both these solutions imparted their colour to cloth, which rinsing did not remove. Hence it appears that the difference in the colours, produced in a tin and in a copper vessel, arise from the action of the colouring matter on the substance of the vessel itself.

The colouring matter of cochineal also acts powerfully on the earths and metallic oxides, or on its own combinations with them or cloth. A piece of calico impregnated with a weak aluminous mordant, and dyed in a strong decoction of cochineal, takes at first a dye which is, however; speedily removed, and the mordant itself soon after carried off the cloth. The same takes place with the dilute solutions of iron. In dyeing with cochineal, therefore, in the way prescribed above, same care is necessary in the management of those goods, on which weak as well as strong mordants are applied, left with the treatment necessary to bring up the latter to their proper strength and fulness, the former be totally deftroyed.

The beautiful pigment carmine, used chiefly in miniature and water-colour painting, and sometimes under the name of rouge, to freshen the cheeks of pallid or faded beauty, is also a preparation of cochineal. It is a light, lost, velvety powder, of a most rich and magnificent scarlet, inclining a little to crimson. It was formerly made from kermes, whence its present name is derived.

The preparation of carmine, notwithstanding the numerous processes detailed in various works, still remains one of those secrets which are confined to the laboratories of a few. Its constitution, indeed, and the general nature of the process for obtaining it, are well known; but excellence in colours of this kind often depending on particular hue, arising from minute but important conditions in the preparation, approved processes are guarded with religious care, confined to the workshops that gave them birth, in which myttery and prejudice are despotic.

We subjoin the following formula without vouching for its merit; it is, however, at least, as good as any other published.

Pour two quarts of fine clear river water into a clean copper pan, and, when boiling, add two ounces of the best grain cochineal, finely ground and sifted. Boil six minutes, stirring carefully the whole time. Add sixty grains of fine Roman alum in powder, and boil three minutes longer, after which withdraw it from the fire and let it cool a little. Decant off the liquor carefully from the grounds, and drain through a silksieve fine enough to retain the undissolved grains. Pour it into well-glazed porcelain dishes and suffer it to remain undisturbed three or four days, after which time again decant the red liquor into other dishes from off the sediment which his formed, and which, dried in the shade and free from dust, forms the fine carmine. Another deposition takes place at the end of a few days from the decanted liquor, which forms a good carmine of second quality, and there still remains colouring matter sufficient in the remaining liquor to afford a rich lake.

The following process, not very different from the former, has been recommended; and, if carefully pursued, will yield a pigment greatly superior to the carmine that is generally met with. Into a fourteen-gallon boiler of well-tinned copper put ten gallons of distilled or very clear rain water (spring water will not answer the purpose). When the water boils, sprinkle in, by degrees, a pound of fine cochiaeal, previously ground in a clean stone mortar to a moderately fine powder; keep up a gentle ebullition for about half an hour, and then add three ounces and a half of crystallized carbonat of soda; in a minute or two afterwards draw the fire, and then add to the liquor an ounce and a half of Roman alum, very finely pulverized; stir the mass with a clean stick till the alum is dissolved, then leave it to settle for 25 minutes, and afterwards draw off the clear liquor with a glass syphon, and separate the rest of the fluid from the sediment by straining it through a close linen cloth. Replace the clear liquor in the boiler, and stir in the whites of two eggs, previously well beaten with a quart of warm water; then light the fire again and heat the liquor till it begins to boil, at which time the albumen of the eggs will coagulate and combine with the earth of the alum and the finest part of the coloaring matter; this sediment is the carmine, and being separated by filtration, and well washed on the filter with distilled water, it is to be spread very thin on an earthen plate, and slowly dried in a stove; after which it is fit for use. The finest part of the colouring matter of the cochineal being thus separated, the residue may be employed in the preparation of red lake in the following manner: Add two, pounds of pearlash to the red liquor from which the carmine was precipitated, and return it into the boiler together with the dregs of the cochineal, and boil the whole gently for about half an hour; then draw the fire, and, after the sediment has subsided, drain off all the clear liquor into clean earthenware vessels. Then pour upon the sediment a second alkaline ley, prepared by dissolving a pound of pearlash in two gallons of water, and boil this also upon the dregs for half an hour; by which process the whole of the colouring matter will be exhausted. Separate by filtration the liquor from the dregs, and return both the alkaline-solutions into the copper. When this bath is as hot as the hand can bear, add, by degrees, three pound, of finely pulverized Roman alum, observing not to add a second portion, till the eftervescence from the first has entirely subsided. When the whole of the alum has been put in, raise the fire till the liquor simmers, and continue it at this temperature for about five minutes, at which time, if a little is taken out and put into a wine glass, it will be found to consist of a coloured sediment diffused through a clear liquor; after-landing quiet a while the greater part of the clear supernatant liquor may be poured off, and the residue being placed on the filter, will there deposit the coloured lake, which, after being accurately washed with clear rain water, may be covered with a cloth, and allowed to remain for a few days till it is half dry: it is now to be separated from the filter, to be made up in small lumps, and placed in a stove to dry. By this management a pound of good Mexican cochineal will afford one ounce and a half of carmine, and about a pound and a quarter of red lake.

If the colour is required to incline somewhat towards scarlet, this may be effected by grinding along with the cochineal from a quarter to half an ounce of the best annotto.

The French add to the infusion of cochineal a small proportion of autour, a bark containing yellow colouring matter, and also of chouan, a greenish yellow feed; both from the Levant. They serve to brighten the hue of the carmine, and incline it more to scarlet. Carmine has a slight taste easily recognized as that of cochineal. It is sparingly soluble in water, to which it communicates its own colour. Mixed up with water it works stiffly with the pencil and affords a poor colour. Ammonia dissolves it instantly, forming with it a deep transparent crimson-coloured solution, inclining much to purple. This is the test of its purity, for the inferior or adulterated carmine is insoluble, and falls to the bottom. The painters generally grind or mix it with ammonia for the deep rich reds, and its solutions in that alkali afford most beautiful pink or role colours.

Carmine appears to be a lake in which the colouring principle predominates very much over the basis; hence its solubility in ammonia, which the true or perfect lakes do not possess.

Kasvien käyttäminen värjäämiseen.

Koitar 40, 11.4.1901

Monin paikoin Suomea käytettiin ennen aikaan lankojen värjäämiseen kasviaineksia. Tämä värjäystapa joutui kumminkin unhotuksiin, kun n. k. paketti-värejä ilmestyi kauppaan. Mutta vaikka nuo pakettivärit ovatkin hyviä ja mukavia käyttää, ei meidän silti pitäisi unhottaa tuota vanhanaikuista tapaa värjätä lankaa kasviaineksilla, vaan päinvastoin ottaa se uudestaan käytäntöön ja koettaa sitä kehittää ja parantaa. Sillä tuo esi-isien värjäystapa antaa paljo pysyväisempiä ja hienompia värejä, kuin mitä noilla nykyään yleisillä pakettiväreillä voi saada.

Suomessa löytyy joukko kasveja, joita sopii käyttää villan ja pumpulin kotonavärjäämiseen, ja useammat noista kasveista esiintyvät suurissa määrissä; eikä niiden kerääminen ja kuivattaminen suuren suuria kustannuksia vaadi. Värjäämiseen sopivista kasveista mainittakoon tässä vain: tuomi, koivu, kanerva, suopursu, lieko, suolaheinä ja monet jäkälälajit. Toisista näistä käytetään kuorta, toisista lehtiä ja toisia taas käytetään kokonaisuudessaan värjäykseen.

Toisia kasveja voi värjäykseen käyttää ainoastaan niiden tuoreina ollessa, koska ne kuivatessa menettävät suuren osa väriaineistaan. Toisen taasi voi käyttää sekä kuivattuina että tuoreina. Sellaiset kasvit, jotka ovat käytettävät tuoreina, eivät edes saa kuihtuakaan, vaan on heti käytettävät. Sellaiset, joita aijotaan säilyttää, ovat ensin hyvin ja nopeasti kuivattavat siimeisellä paikalla; kuivatessa ovat ne usein käännettävät, etteivät vaan pääse homehtumaan. Kun kasvit ovat aivan kuivat pannaan ne säkkeihin ja säilytetään kuivalla paikalla.

Värjäykseen aijotut kuoret kerätään keväällä, kun puut ovat mahalassa, jolloin ne helposti irtautuvat puusta. Puista, jotka jo ovat sammaloittuneet, ei pidä ottaa kuorta; nuorissa oksissa kuori ei vielä sisällä värjäykseen riittävä määrä väriainetta.

Värjääminen tapahtuu paraiten kuparikastrullissa; rautapadassa väri ei tule puhdasta eikä kirkasta.

Puunkuoret taitetaan pieniin palasiin ja keitetään riittävässä määrässä vettä, kunnes väriaien niistä on lähtenyt. Uutos (keitevesi) siivilöidään ja lanka keitetään siinä. Ensin on lanka kumminkin huolellisesti pestävä ja alunoitava.

Alunoiminen tapahtuu siten, että lanka ½ tuntia keitetään alunaliuvoksessa, joka saadaan siten, että kutakin lankakiloa kohti lasketaan 150gr. alunata liuotettuna 30-40 litraan vettä. Toiset värit eivät ollenkaan tarvitse alunoimista.

Harmaan (hikiäis) lepän kuorta voi käyttää sekä tuoreena että kuivattuna. Kuoria keitetään 3 à 4 tuntia. Uutos siivilöidään ja alunoitua lankaa keitetään siinä noin ½-1 tunti. Lanka saa keltasenharmaan värin. Panemalla uutokseen 10-50 gr. rautavihtrilliä saa värin tumman harmaaksi jopa melkein mustaksi.

Tuomen kuorta käytetään kuten harmaan lepän kuortakin. Tuomen kuori antaa punertavan harmaan värin. Jollei rautavihtrilliä käytetä, antaa se vaalean punaisen värin.

Koivun kuori antaa keltaisenharmaan värin.

Pajakan kuorta ei voi tuoreena käyttää värjäykseen. Vasta seuraavana vuonna sen jälkeen kun se on korjattu voi sitä käyttää, ja antaa se silloin kauniin pronssiruskean värin; jos kauvemman aikaa keittää antaa se ruskean värin. Kuorta keitetään 2-3 tuntia ja siivilöidään. Lankaa ei alunoida, mutta sama määrä alunata, kuin mitä langan alunoimiseen käytettäisiin, pannaan yhtaikaa langan kanssa kastrulliin.

Kaikki ylempänä mainitut mitat ovat lasketut yhtä lankakiloa kohti. Värjäyksen jälkeen on lanka pestävä suopa- eli saippuavedessä.

5.7.22

The Colors of Animal and Plants. II. The Colors of Plants.

The Living Age 1743, 10.11.1877

From Macmillan's Magazine.*

*In the first part of this paper I used the term "voluntary sexual selection" to indicate the theory that many of the ornaments of male animals have been produced by the choice of the females, and to distinguish it from that form of sexual selection which explains the acquisition of weapons peculiar to male animals as due to the selective influence of their combats and struggles for the possession of the females. I find that Mr. Darwin thinks the terra "voluntary" not strictly applicable, and I therefore propose to alter it to "conscious" or "perceptive," which seem free from any ambiguity and make not the least difference to my argument.The coloring of plants is neither so varied nor so complex as that of animals, and its explanation accordingly offers fewer difficulties. The colors of foliage are, comparatively, little varied, and can be traced in almost all cases to a special pigment termed chlorophyll, to which is due the general green color of leaves; but the recent investigations of Mr. Sorby and others have shown that chlorophyll is not a simple green pigment, but that it really consists of at least seven distinct substances, varying in color from blue to yellow and orange. These differ in their proportions in the chlorophyll of different plants; they have different chemical reactions; they are differently affected by light; and they give distinct spectra. Mr. Sorby further states that scores of different coloring matters are found in the leaves and flowers of plants, to some of which appropriate names have been given, as erythrophyll which is red, and phaiophyll which is brown; and many of these differ greatly from each other in their chemical composition. These inquiries are at present in their infancy, but as the original term chlorophyll seems scarcely applicable under the present aspect of the subject, it would perhaps be better to introduce the analogous word chromophyll as a general term for the coloring matters of the vegetable kingdom.

Light has a much more decided action on plants than on animals. The green color of leaves is almost wholly dependent on it; and although some flowers will become fully colored in the dark, others are decidedly affected by the absence of light, even when the foliage is fully exposed to it. Looking therefore at the numerous colored substances which are developed in the tissue of plants; the sensitiveness of these pigments to light; the changes they undergo during growth and development; and the facility with which new chemical combinations are effected by the physiological processes of plants as shown by the endless variety in the chemical constitution of vegetable products, we have no difficulty in comprehending the general causes which aid in producing the colors of the vegetable world, or the extreme variability of those colors. We may therefore here confine ourselves to an inquiry into the various uses of color in the economy of plants; and this will generally enable us to understand how it has become fixed and specialized in the several genera and species of the vegetable kingdom.

In animals, as we have seen, color is greatly influenced by the need of protection from or of warning to their numerous enemies, and to the necessity for identification and easy recognition. Plants rarely need to be concealed, and obtain protection either by their spines, their hardness, their hairy covering, or their poisonous secretions. A very few cases of what seem to be true protective coloring do, however, exist, the most remarkable being that of the "stone mesembryanthemum," of the Cape of Good Hope, which in form and color closely resembles the stones among which it grows; and Dr. Burchell, who first discovered it, believes that the juicy little plant thus generally escapes the notice of cattle and wild herbivorous animals. Mr. J. P. Mansel Weale also noticed that many plants growing in the stony Karoo have their tuberous roots above the soil, and these so perfectly resemble the stones among which they grow that, when not in leaf, it is almost impossible to distinguish them (Nature, vol. iii. p. 507). A few cases of what seem to be protective mimicry have also been noted, the most curious being that of three very rare British fungi, found by Mr. Worthington Smith, each in company with common species, which they so closely resembled that only a minute examination could detect the difference. One of the common species is stated in botanical works to be "bitter and nauseous," so that it is not improbable that the rare kind may escape being eaten by being mistaken for an uneatable species, though itself palatable. Mr. Mansel Weale also mentions a labiate plant, the Ajuca ophrydis, of South Africa, as strikingly resembling an orchid. This may be a means of attracting insects to fertilize the flower in the absence of sufficient nectar or other attraction in the flower itself; and the supposition is rendered more probable by this being the only species of the genus Ajuga in South Africa. Many other cases of resemblinces between very distinct plants have been noticed — as that of some euphorbias to cacti; but these very rarely inhabit the same country or locality, an it has not been proved that there is in any of these cases the amount of interrelation between the species which is the essential feature of the protective "mimicry" that occurs in the animal world.

The different colors exhibited by the foliage of plants, and the changes it undergoes during growth and decay, appear to be due to the general laws already sketched out, and to have little if any relation to the special requirements of each species. But flowers and fruits exhibit definite and well-pronounced tints, often varying from species to species, and more or less clearly related to the habits and functions of the plant. With the few exceptions already pointed out, these may be generally classed as attractive colors. The seeds of plants require to be dispersed so as to reach places favorable for germination and growth. Some are very minute, and are carried abroad by the wind, or they are violently expelled and scattered by the bursting of the containing capsules. Others are downy or winged, and are carried long distances by, the gentlest breeze. But there is a large class of seeds which cannot be dispersed in either of these ways, and are mostly contained in eatable fruits. These fruits are devoured by birds or beasts, and the hard seeds pass through their stomachs undigested, and, owing probably to the gentle heat and moisture to which they have been subjected, in a condition highly favorable for germination. The dry fruits or capsules containing the first two classes of seeds are rarely, if ever, conspicuously colored, whereas the eatable fruits almost invariably acquire a bright color as they ripen, while at the same time they become soft and often full of agreeable juices. Our red haws and nips, our black elderberries, our blue sloes and whortleberries, our white mistletoe and snow berry, and our orange sea-buckthorn, are examples of the colorsign of edibility; and in every part of the world the same phenomenon is found. The fruits of large forest trees, such as pines, oaks, and beeches, are not colored, perhaps because their size and abundance render them sufficiently conspicuous, and also because they provide such a quantity of food to such a number of different animals that there is no danger of their being unnoticed.

The colors of flowers serve to render them visible and recognizable by insects which are attracted by secretions of nectar or pollen. During their visits for the purpose of obtaining these products, insects involuntarily carry the pollen of one flower to the stigma of another, and thus effect cross-fertilization, which, as Mr. Darwin was the first to demonstrate, immensely increases the vigor and fertility of the next generation of plants. This discovery has led to the careful examination of great numbers of flowers, and the result has been that the most wonderful and complex arrangements have been found to exist, alt having for their object to secure that flowers shall not be selffertilized perpetually, but that pollen shall be carried, either constantly or occasionally, from the flowers of one plant to those of another. Mr. Darwin himself first worked out the details in orchids, primulas, and some other groups; and hardly less curious phenomena have since been found to occur, even among some of the most regularly-formed flowers. The arrangement, length, and position of all the parts of the flower is now found to have a purpose, and not the least remarkable portion of the phenomenon is the great variety of ways in which the same result is obtained. After the discoveries with regard to orchids, it was to be expected that the irregular, tubular, and spurred flowers should present various curious adaptations for fertilization by insect agency. But even among the open, cupshaped, and quite regular flowers, in which it seemed inevitable that the pollen must fall on the stigma, and produce constant selffertilization, it has been found that this is often prevented by a physiological variation — the anthers constantly emitting their pollen either a little earlier or a little later than the stigma of the same flower, or of other flowers on the same plant, were in the best state to receive it; and as individual plants in different stations, soils, and aspects, differ somewhat in the time of flowering, the pollen of one plant would often be conveyed by insects to the stigmas of some other plant in a condition to be fertilized by it. This mode of securing cross-fertilization seems so simple and easy. that we can hardly help wondering why it did not always come into action, and so obviate the necessity for those elaborate, varied, and highly complex contrivances found in perhaps the majority of colored flowers. The answer to this of course is, that variation sometimes occurred most freely in one part of a plant's organization, and sometimes in another, and that the benefit of cross-fertilization was so great that any variation that favored it was preserved, and then formed the startingpoint of a whole series of further variations, resulting in those marvellous adaptations for insect fertilization, which have given much of their variety, elegance, and beauty to the floral world. For details of these adaptations we must refer the reader to the works of Darwin, Lubbock, Herman Müller, and others. We have here only to deal with the part played by color, and by those floral structures in which color is most displayed.

* Trees and Shrubs for English Plantations, by Augustus Moogredien. Murray, 1870.The sweet odors of flowers, like their colors, seem often to have been developed as an attraction or guide to insect fertilizers, and the two phenomena are often complementary to each other. Thus, many inconspicuous flowers, like the mignonette and the sweet-violet, can be distinguished by their odors before they attract the eye, and this may often prevent their being passed unnoticed; while very showy flowers, and especially those with variegated or spotted petals, are seldom sweet. White, or very pale flowers, on the other hand, are often excessively sweet, as exemplified by the jasmine and clematis; and many of these are only scented at night, as is strikingly the case with the nightsmelling stock, our butterfly orchis (Habenaria chlorantha), the greenish-yellow Daphne pontica, and many others. These white flowers are mostly fertilized by night-flying moths, and those which reserve their odors for the evening probably escape the visits of diurnal insects which would consume their nectar without effecting fertilization. The absence of odor in showy flowers and its preponderance among those that are white, may be shown to be a fact by an examination of the lists in Mr. Mongredien's work on hardy trees and shrubs.* He gives a list of about one hundred and sixty species with showy flowers, and another list of sixty species with fragrant flowers; but only twenty of these latter are included among the showy species, and these are almost all white-flowered. Of the sixty species with fragrant flowers, more than forty are white, and a number of others have greenish, yellowish, or dusky and inconspicuous flowers. The relation of white flowers to nocturnal insects is also well shown by those which, like the evening primroses, only open their large white blossoms after sunset. The red Martagon lily has been observed by Mr. Herman Müller to be fertilized by the hummingbird hawk moth, which flies in the morning and afternoon when the colors of this flower, exposed to the nearly horizontal rays of the sun, glow with brilliancy, and when it also becomes very sweet-scented.

To the same need of conspicuousness the combination of so many individually small flowers into heads and bunches is probably due, producing such broad masses as those of the elder, the gueldre-rose, and most of the umbelliferæ, or such elegant bunches as those of the lilac, laburnum, horse-chestnut, and wistaria. In other cases minute flowers are gathered into dense heads, as with Globularia, Jasione, clover, and all the compositæ and among the latter the outer flowers are often developed into a ray, as in the sunflowers, the daisies, and the asters, forming a starlike compound flower, which is itself often produced in immense profusion.

*Nature, vol. xi., pp. 32. 110The beauty of alpine flowers is almost proverbial. It consists either in the increased size of the individual flowers as compared with the whole plant, in increased intensity, of color, or in the massing of small flowrs into dense cushions of bright color; and it is only in the higher Alps, above the limit of forests and upwards towards the perpetual snow-line that these characteristics are fully exhibited. This effort at conspicuousness under adverse circumstances may be traced to the comparative scarcity of winged insects in the higher regions, and to the necessity for attracting them from a distance. Amid the vast slopes of debris and the huge masses of rock so prevalent in higher mountain regions, patches of intense color can alone make themselves visible and serve to attract the wandering butterfly from the valleys. Mr. Herman Müller's careful observations have shown, that in the higher Alps bees and most other groups of winged insects are almost wanting, while butterflies are tolerably abundant; and he has discovered, that in a number of cases where a lowland flower is adapted to be fertilized by bees, its alpine ally has had its structure so modified as to be adapted for fertilization only by butterflies.* But bees are always (in the temperate zone) far more abundant than butterflies, and this will be another reason why flowers specially adapted to be fertilized by the latter should be rendered unusually conspicuous. We find, accordingly, the yellow primrose of the plains replaced by pink and magenta-colored alpine species the straggling wild pinks of the lowlands by the masses of large flowers in such mountain species as Dianthus alpinus and D. glacialis; the saxifrages of the high Alps with bunches of flowers a foot long, as in Saxifraxa longifolia and S. cotyledon, or forming spreading masses of flowers, as in S. oppositifolia; while the soapworts, silenes, and louseworts are equally superior to the allied species of the plains.

*Nature, vol. ic., p.164.Again, Dr. Müller has discovered that when there are showy and inconspicuous species in the same genus of plants, there is often a corresponding difference of structure, those with large and showy flowers being quite incapable of self-fertilization, and thus depending for their very existence on the visits of insects; while the others are able to fertilize themselves should insects fail to visit them. We have examples of this difference in Malva sylvestris, Epilobium angustifolium, Polyganum historta, and Geranium pratense,— which have all large or showy flowers and must be fertilized by insects, — as compared with Malva rotundifolia, Epilobium parviflorum, Polygonum aviculare, and Geranium pusilium, which have small or inconspicuous flowers, and are so constructed that if insects should not visit them they are able to fertilize themselves.*

As supplementing these curious facts showing the relation of color in flowers to the need of the visits of insects to fertilize them, we have the remarkable, and on any other theory utterly inexplicable circumstance, that in all the numerous cases in which flints are fertilized by the agency of the wind they never have specially colored floral envelopes. Such are our pines, oaks, poplars, willows, beeches, and hazel; our nettles, grasses, sedges, and many others. In some of these the male flowers are, it is true, conspicuous, as in the catkins of the willows and the hazel, but this arises incidentally from the masses of pollen necessary to secure fertilization, as shown by the entire absence of a corolla or of those colored bracts which so often add to the beauty and conspicuousness of true flowers.

*See Nature, September 6th, 1876.The adaptation of flowers to be fertilized by insects — often to such an extent that the very existence of the species depends upon it — has had widespread influence on the distribution of plants and the general aspects of vegetation. The seeds of a particular species may be carried to another country, may find there a suitable soil and climate, may grow and produce flowers, but it the insect which alone can fertilize it should not inhabit that country, the plant cannot maintain itself, however frequently it may be introduced or however vigorously it may grow. Thus may probably be explainea the poverty in flowering plants and the great preponderance of ferns that distinguishes many oceanic islands, as well as the deficiency of gailycolored flowers in others. This branch of the subject is discussed at some length in my address to the Biological Section of the British Association,* but I may here just allude to two of the most striking cases. New Zealand is, in proportion to its total number of flowering plants, exceedingly poor in handsome flowers, and it is correspondingly poor in insects, especially in bees and butterflies, the two groups which so greatly aid in fertilization. In both these aspects it contrasts strongly with southern Australia and Tasmania in the same latitudes, where there is a profusion of gaily-colored flowers and an exceedingly rich insect fauna. The other case is presented by the Galapagos Islands, which, though situated on the equator off the west coast of South America, and with a tolerably luxuriant vegetation in the damp mountain zone, yet produce hardly a single conspicuously-colored flower; and this is correlated with, and no doubt dependent on, an extreme poverty of insect life, not one bee and only a single butterfly having been found there.

Again, there is reason to believe that some portion of the large size and corresponding showiness of tropical flowers is due to their being fertilized by very large insects and even by birds. Tropical sphinx moths often have their probosces nine or ten inches long, and we find flowers whose tubes or spurs reach about the same length; while the giant bees, and the numerous flowersucking birds, aid in the fertilization of flowers whose corollas or stamens are proportionately large.

I have now concluded this sketch of the general phenomena of color in the organic world. I have shown reasons for believing that its presence, in some of its infinitely varied hues, is more probable than its absence, and that variation of color is an almost necessary concomitant of variation of structure, of development, and of growth. It has also been shown how color has been appropriated and modified both in the animal and vegetable world, for the advantage of the species in a great variety of ways, and that there is no need to call in the aid of any other laws than those of organic development and "natural selection" to explain its countless modifications. From the point of view here taken it seems at once improbable and unnecessary that the lower animals should have the same delicate appreciation of the intl. nite variety and beauty of the delicate contrasts and subtle harmonies of color — which are possessed by the more intellectual races of mankind, since even the lower human races do not possess it. All that seems required in the case of animals, is a perception of distinctness or contrast of colors; and the dislike of so many creatures to scarlet may perhaps be due to the rarity of that color in nature, and to the glaring contrast it offers to the sober greens and browns which form the general clothing of the earth's surface.

The general view of the subject now given must convince us that, so far from color being — as it has sometimes been thought to be — unimportant, it is intimately connected with the very existence of a large proportion of the species of the animal and vegetable worlds. The gay colors of the butterfly and of the alpine flower which it unconsciously fertilizes while seeking for its secreted honey, are each beneficial to its possessor, and have been shown to be dependent on the same class of general laws as those which have determined the form, the structure, and the habits of every living thing. The complex laws and unexpected relations which we have seen to be involved in the production of the special colors of flower, bird, and insect, must give them an additional interest for every thoughtful mind; while the knowledge that, in all probability, each style of coloration, and sometimes the smallest details, have a meaning and a use, must add a new charm to the study of nature.

Throughout the preceding discussion we have accepted the subjective phenomena of color — that is, our perception of varied hues, and the mental emotions excited by them — as ultimate facts needing no explanation. Yet they present certain features well worthy of attention, a brief consideration of which will form a fitting sequel to the present essay.

The perception of color seems, to the present writer, the most wonderful and the most mysterious of our sensations. Its extreme diversities and exquisite beauties seem out of proportion to the causes that are supposed to have produced them, or the physical needs to which they minister. If we look at pure tints of red, green, blue, and yellow, they appear so absolutely contrasted and unlike each other, that it is almost impossible to believe (what we nevertheless know to be the fact) that the rays of light producing these very distinct sensations differ only in wavelength and rate of vibration; and that there is from one to the other a continuous series and gradation of such vibrating waves. The positive diversity we see in them must then depend upon special adaptations in ourselves; and the question arises — for what purpose have our visual organs and mental perceptions become so highly specialized in this respect ? When the sense of sight was first developed in the animal kingdom, we can hardly doubt that what was perceived was light only, and its more or less complete withdrawal. As the sense became perfected, more delicate gradations of light and shade would be perceived; and there seems no reason why a visual capacity might not have been developed as perfect as our own, or even more so, in respect of light and shade, hut entirely insensible to differences of color, except in so far as these implied a difference in the quantity of light. The world would in that case appear somewhat as we see it in good stereoscopic photographs; and we all know how exquisitely beautiful such pictures are, and how completely they give us all requisite information as to form, surface-texture, solidity, and distance, and even to some extent as to color; for almost all colors are distinguishable in a photograph by some differences of tint, and it is quite conceivable that visual organs might exist which would differentiate what we term color by delicate gradations of some one characteristic neutral tint. Now such a capacity of vision would be simple as compared with that which we actually pos. secs; which, besides distinguishing infinite gradations of the quantity of light, distinguishes also, by a totally distinct set of sensations, gradations of quality, as determined by differences of wave-lengths or rate of vibration. At what grade in animal development this new and more complex sense first began to appear we have no means of determining. The fact that the higher vertebrates, and even some insects, distinguish what are to us diversities of color, by no means proves that their sensations of color bear any resemblance whatever to ours. An insect's capacity to distinguish red from blue or yellow may be (and probably is) due to perceptions of a totally distinct nature, and quite unaccompanied by any of that sense of enjoyment or even of radical distinctness which pure colors excite in us. Mammalia and birds, whose structure and emotions are so similar to our own, do probably receive somewhat similar impressions of color; but we have no evidence to show that they experience pleasurable emotions from color itself when not associated with the satisfaction of their wants or the gratification of their passions.

* There is reason to believe that our capacity of distinguishing colors has increased even in historical times. The subject has attracted the attention of German philologists, and I have been furnished by a friend with some notes from a work of the late Lazarus Geiger entitled. "Zur Entwickelungsgeschichte der Menschheit" (Stuttgart, 1871). According to this writer it appears that the color of grass and foliage is never alluded to as a beauty in the Vedas or the Zendavesta, though these productions are continually extolled for other properties. Blue is described by terms denoting sometimes green, sometimes black, showing that it was hardly recognized as a distinct color. The color of the sky is never mentioned in the Bible, the Vedas, the Homeric poems, or even in the Koran. The first distinct allusion to it known to Geiger is in an Arabic work of the ninth century. "Hyacinthine locks" are black locks, and Homer calls iron "violet-colored." Yellow was often confounded with green, but, along with red, it was one of the earliest colors to receive a distinct name. Aristotle names three colors in the rainbow - red, yellow, and green. Two centuries earlier Xenophanes had described the rainbow as purple, reddish, and yellow. The Pythagoreans admitted four primary colors — white, black, red, and yellow; the Chinese the same, with the addition of green. If these statements fairly represent the early condition of color-sensation they well accord with the view here maintained, that green and blue were first alone perceived, and that the other colors were successively separated from them. These latter would be the first to receive names; hence we find purple, reddish, and yellow first noticed in the rainbow as the tints to be separated from the widespread blue and green of the visible world which required no distinctive color-appellation. If the capacity of distinguishing colors has increased in historic times, we may perhaps look upon color-blindness as a survival of a condition once almost universal; while the fact that it is still so prevalent is in harmony with the view that our present high perception and appriciation of color is a comparatively recent acquisition, and may be correlated with a general advance in mental activity.The primary necessity which led to the development of the sense of color, was probably the need of distinguishing objects much alike in form and size, but differing in important properties; such as ripe and unripe, or eatable and poisonous fruits; flowers with honey or without; the sexes of the same or of closely allied species. In most cases the strongest contrast would be the most useful, especially as the colors of the objects to be distinguished would form but minute spots or points when compared with the broad masses of tint of sky, earth, or foliage against which they would be set. Throughout the long epochs in which the sense of sight was being gradually developed in the higher animals, their visual organs would be mainly subjected to two groups of rays — the green from vegetation, and the blue from the sky. The immense preponderance of these over all other groups of rays would naturally lead the eye to become specially adapted for their perception; and it is quite possible that at first these were the only kinds of lightvibrations which could be perceived at all. When the need for differentiation of color arose, rays of greater and of smaller wavelengths would necessarily be made use of to excite the new sensations required; and we can thus understand why green and blue form the central portion of the visible spectrum, and are the colors which are most agreeable to us in large surfaces; while at its two extremities we find yellow, red, and violet, colors which we best appreciate in smaller masses, and when contrasted with the other two or with light neutral tints. We have here probably the foundations of a natural theory of harmonious coloring, derived from the order in which our color-sensations have arisen, and the nature of the emotions with which the several tints have been always associated.* The agreeable and soothing influence of green light may be in part due to the green rays having little heating power; but this can hardly be the chief cause, for the blue and violet, though they contain less heat, are not generally felt to be so cool and sedative. But when we consider how dependent are all the higher animals on vegetation, and that man himself has been developed in the closest relation to it, we shall find, probably, a sufficient explanation. The green mantle with which the earth is overspread caused this one color to predominate over all others that meet our sight, and to be almost always associated with the satisfaction of human wants. Whcrc the grass is greenest, and vegetation most abundant and varied, there has man always found his most suitable dwellingplace. In such spots hunger and thirst are unknown, and the choicest productions of nature gratify the appetite and please the eye. In the greatest heats of summer, coolness, shade, and moisture are found in the green forest glades; and we can thus understand how our visual apparatus has became especially adapted to receive pleasurable and soothing sensations from this class of rays.

The preceding considerations enable us to comprehend, both why a perception of difference of color has become developed in the higher animals, and also why colors require to be presented or combined in varying proportions in order to be agreeable to us. But they hardly seem to afford a sufficient explanation, either of the wonderful contrasts and total unlikeness of the sensations produced in us by the chief primary colors, or of the exquisite charm and pleasure we derive from color itself, asdistinguished from variouslycolored objects, in the case of which association of ideas comes into play. It is hardly conceivable that the material uses of color to animals and to ourselves required such very distinct and powerfully contrasted sensations; and it is still less conceivable that a sense of delight in color per se should have been necessary for our utilization of it.

The emotions excited by color and by music, alike, seem to rise above the level-of a world developed on purely utilitarian principles.

- Alfred R. Wallace.

Cotton-Velvet.

Manufacturer and builder 3, 1883

There is a substance called cotton-velvet made in China. It is very soft and durable. Generally it is dyed of a dark-blue color, in a solution of one part of indigo to thirteen parts of water having a small admixture of wine and lime. After the velvet has been allowed to soak in this solution for about half an hour, it is wrung out and dried in the sun. This process is repeated eleven times, and finally the texture is dampened carefully with a spray of slightly acidulated water.

Värien pirskuminen eli pölyäminen

Kirjapainotaito 4, 1927

Painovärien pirskuminen eli pölyäminen esiintyy useimmiten silloin, kun värien kiinteys (konsistenssi) on joko liian juoksevaa tahi liian tahmeaa. Siitä myöskin johtuu, että lämpötilan äkkiä huomattavasti vaihtuessa, värit, jotka aikaisemmin eivät tätä puutosta vähintäkään osoittaneet, pirskuvat. Useimmiten pirskuvat värit tietysti painettaessa rotationikoneilla ja hyvin nopeasti käyvillä pikapainokoneilla, joiden telojen ympärysmitta on vähäinen.

Melkoisesti muuttuvat lämpösuhteet vaativat, ehkäistäkseen värien pirskumisen, kiinteyden muuttumista, mutta selvää on, että myöskin kiinteytensä puolesta oikea väri voi olla taipuvainen pirskumiseen, jos sitä epätarkoituksenmukaisesti varastoidaan ja sen johdosta e ipainohuoneen lämpömäärää vielä oltu saavutettu, kun väri tulee käytäntöön. posti juokseva, pehmyt väri tulee kohonneen lämmön vaikutuksesta yhä juoksevammaksi ja hyvä peittäminen vaatii senjälkeen runsaan värinannon, johon värinkulutus ei suhtaudu oikein. Ylijäänyt väri kerääntyy vähitellen teloille ja nämä heittävät sen pois, toisin sanoen: väri pirskuu. Vetoinen, kiinteämpi väri tulee, lämpötilan ollessa matalamman, jäykemmäksi ja kovemmaksi, hieroutuen telojen erotessa toisistaan nauhoiksi, jotka paukkuvat poikki ja osaksi pirskuvat ympäri. Normaalilämpötilassa ja värin kiinteyden ollessa oikean voi värinpirskuminen tapahtua myös kun teloissa ei enää ole oikeaa vetoa, ovat siis tulleet liian koviksi, toki myöskin kun ne ovat kosteuden vaikutuksesta turvonneet, siis tulleet liian kimmoisiksi. Usein on myöskin kehilötelojen väärä asema(liian ahdas vierekkäin asettaminen) syynä, että väri, jolla muutoin ei tätä vikaa ole, pirskuu.

Sointuväreillä, sekä suurilla pinnoilla, kirjaimilla jne. painettaessa, johtuen usein paperin laadusta, väri ohennetaan heikolla vernissalla mahdollisimman juokse vaksi ja painetaan runsaalla värinannolla. Koneen käydessä nopeasti pirskuu sellainen väri ehdottomasti, sillä kun ei ole riittävää kiinteyttä. Vahvemman vernissan lisääminen tekee haitan vain suuremmaksi, koskei vahvan ja heikon vernissan sitominen lapion avulla koskaan onnistu. Edellisen hiukkaset erittyvät telojen päälle, vetäytyen nauhoiksi, jolloin telojen erotessa pienet osat tulevat poisviskatuiksi. - Ylläolevan avulla pitäisi olla mahdollista ilmenevissä tapauksissa tutkia "paikan päällä" todenperäistä pirskumisen syytä ja poistaa haitta tahi antaa asianomaista ohjausta puutteen poistamiseksi.

Edelläoleva on otettu Berger & Wirthin väritehtaan kirjasesta "Druckfarben-technisches", josta myös vastedes tulemme julkaisemaan teknillisiä tietoja kirja- ja kivipainoväreistä.

Dangers Lurking in the Walls.

Manufacturer and builder 3, 1877

It has often been found in old cities like London, that where, in papering rooms, the new paper was simply put on top of the old paper, quite a thick coat of wallpapers was found superposed; and us wall-papers absorb and retain all kinds of exhalations, such walls may be store-houses of miasma; hence the practice of leaving the old wallpaper when repaperiug a room is condemned by sanitarians. Very often the wholesomeness of an apartment has been established by the total removal of the old wall-paper and old furniture, while in hospitals the replastering of walls and ceilings from time to time is a necessity. We find it, recently reported in the newspapers that an English-man, several members of whose family had been sick with typhoid fever, had a room repapered, and found that there were no less than twenty-five wallpapers already on the wall. The presence of this mass of decomposing paste and paper sufficiently accounted for the disagreeable smell that was always noticeable, although drains and water-closets were well trapped. The paper was all removed, the walls whitewashed, so as to cause the caustic lime to destroy the miasmatic organisms, and the room left with open windows exposed to the free access of the air. After a few weeks it was repapered, and all disagreeable smell was found to have ceased, while the typhoid fever disappeared without medical treatment or doctor's bills.

Varokaa myrkyllisiä väriaineita.

Keski-Uusimaa 36, 16.5.1928

Myrkyllisyydestä huolimatta on väriainealia suuri taloudellinen merkitys hintaan ja kestävyyteen nähden. Jos väriaineita hankkiessa kiinnitämme vain huomiota nimeen ja hintaan, saamme usein semmoista väriä että se joko ei kuivu ollenkaan kestäväksi, tahi kuivuu verrattain hitaasti, ja sitten muutaman vuoden kuluttua alkaa lohkeilemaan ja irtautumaan. Tällöin useimmiten syytetään maalaria, että maalasi kovin huonosti, kun nyt jo väri lähtee seinistä pois. Jos maalari on hankkinut väriaineet, osuu syytös oikeaan, mutta jos maalauttaja tahi omistaja, on itse hankkinut väriaineet on silloin aiheetonta syyttää maalaria, sillä tämmöisissä tapauksissa huono kestävyys tavallisesti johtuu väriaineiden huonoudesta enempi kuin taitamattomasta värin valmistuksesta.

Eikö kaikki samannimiset väriaineet olekaan sitten samanlaatuisia, kysynee joku. Tähän täytyy nykyisin valitettavasti vastata kieltävästi. Ottakaaamme pieni esimerkki. Ostamme maalausta varten ultramariinisinistä 10 kiloa á 25 mk., hintaan 240 mk. jolloin olemme saanent tingattua 10 markkaa alennusta. Kun tästä väriaineesta otamme sitten näytteen ja tutkimme, onko se oikeata ultramariinisinistä, huomaamme useinkin, että väriin on sekoitettu puoleksi raskassälpää, jonka hinta tavallisesti on 1 mk. kilolta. Tällöin väriaineen todellinen hinta, 10 kilolta onkin vain 130 markkaa ja olemme siitä maksaneet 240 mk. Olemme siis 10 kilon väriaineesta joutuneet maksamaan 110 markkaa yli käyvän hinnan ja saaneet väriaineen, joita puuttuu hyvän kestävän värin ominaisuudet. Onpa käytännössä joskus sattunut semmoisiakin esimerkkejä, että ultramariinisinistä ostettaessa on saatu väriainetta, joka ei sisällä mainittua väriainetta ollenkaan, vaan aniliiniiia värjättyjä lisäkkeitä.

Kuten yleisesti on tunnettua, ei liidulla, raskassälvällä y.m. senlaatuisella aineella ole mitään peittokykyä öljyyn sekoitettuna, joten ne vain pilaavat oikean väriaineen ja hävittävät tahi peittävät väristä sen oikean kauniin väriaineen, tehden värin epätasaiseksi ja epäsiistiksi. Varsinkin asuinhuoneiden lattioita maalattaessa väriaineiden sopimattomuuden tulee useinkin huomaamaan, kun värin kuivuminen kestää useita viikkoja, jopa kuukausimääriä, ja jos sitten pinnan lakeeraa, ei väri monessa tapauksessa kuivu koko kulutuskautena, vaan muutaman vuoden kuluttua alkaa lohkeilla ja irtaantua puusta.

Värien kestämättömyys voi kyllä johtua useammasta seikasta, myöskin taitamattomasta väriaineiden sekoituksesta ja huonoista sideaineista, mutia myöskin väärennetyistä väriaineista.

Huonosti kestävät värit tulevat aikaa myöten kalliiksi, vaikkapa väriaineet saisikin verrattain halvalla, joten väriaineidenkin suhteen on otettava huomioon niiden tarkoituksenmukaisuus. On siis kiinnitettävä enempi huomiota tavaran laatuun, ja ja sen perusteella arvosteltava tavaran hintaa. Verrattain kova kilpailu kaupan alalla on tavallaan houkuttelevana tekijänä laskea tavaran hinta alle käyvän hinnan, ja seurauksena tästä on sitten keinottelu tavalla taikka toisella koettaa ottaa vahingot takaisin. Niinpä väriaineidenkin alalla on esiintynyt hyvinkin paljon väärennyksiä, joista tottumattomat, ammattitaitoa vailla olevat maalaritkaan eivät saa selvyyttä, eivätkä monet kauppiaatkaan ole myymistään väriaineista tietoisia, mitkä niistä ovat väärennettyjä ja mitkä väärentämättömiä. Ammattitaitoinen maalari voi kyllä kemiallisin keinoin tutkia värien väärentämättömyyden, joten asiaa voidaan paljon auttaa sillä, että anuetaan väriaineita tutkittavaksi ennenkun niitä suuremmassa määrässä ostetaan. Näytteitä voisi lähettää myöskin laporatorioon tutkittavaksi.

Nyt maalauskauden lähetessä on asiaan kiinnitettävä entistä suurempaa huomiota, silla väärennettyjen väriaineiden käytöstä aiheutuvat vahingot ovat moninkertaiset. Huonosti kestävät värit tulevat kalliiksi lyhyen kestävyyden vuoksi. Jos sitten maalauksessa on käytetty myrkyllisiä väriaineita, aiheuttaa huonosti kestävä väri väriaineden maalista irtautumisen vuoksi värimyrkytyksiä elukoissa tahi lapsissa, kun joutuvat irtautuvien väriaineiden välittömään yhteyteen. Voipa värimyrkytyksen vaikutusta joskus joulua kokemaan aikuisetkin. Maalauttajain olisi tähän maalauskysymykseen erikoisemmin kiinnitettävä huomiota, sillä muutoin väriaineiden epätaloudellisuutta ja myrkyllistä vaikutusta vastaan kohdistetut toimenpiteet ovat verrattain vähätuloksellisia. Kun myrkyllisten väriaineiden asemasta ei vielä voida käyttää kestäviä myrkyttömiä väriaineita, olisi ammattitaidon kehittämisen avulla saatava väriaineet oikein sekoitetuksi väärentämättömistä aineista, jolloin värit tulisivat olemaan kestäviä, pitkäaikaisia, ja väriaineen myrkyllinen vaikutus tulisi sidottua maaliin tehottomaksi koko maalauksen kestävyyskauden ajaksi.

- Maalari

Toimenpiteitä väärennetyn voin myynnin ehkäisemiseksi.

Kauppalehti 1, 3.1.1912

Venäjältä ulkomaille vietävän voin hinnan korottamista varten on Venäjän maanviljelysministeriö laatinut lakiehdotuksen, mikä kohdakkoin jätetään duumalle. Sen ensimäisessä pykälässä on määrittely siitä, mitä on ymmärrettävä voilla. Toinen pykälä kieltää keinotekoisesti lisäämästä voin vesipitoisuutta ja valmistamasta ja myymästä voita, missä on enemmän kuin 16% vettä. Edelleen laki kieltää käyttämästä voin värjäykseen anilinivärejä, mutta sallii erityisesti tarkoitusta varten valmistetut vaarattomat kasvisvärit. Edelleen ei saa voihin sekottaa muita aineita kuin suolaa. Kaiken tämän noudattamisen tarkastus annetaan terveydenhoitoviranomaisten, hallituksen määräämäin ammattimiesten ja meijeritalouden neuvojain toimeksi. Samoin voidaan siihen valtuuttaa semstvojen, pörssikomiteain, maanviljelysseurain ja -liittojen asiantuntijat. Nämä henkilöt on laskettava tarkastamaan ja ottamaan näytteitä voin valmistuspaikkoihin ja myymälöihin j. n. e. Tarkastusmiehet ottavat 2 näytettä, sulkevat ne sinetillä, toisen antavat kuittia vastaan kaupan tai meijerin omistajalle ja toisen lähettävät laboratorioon tarkastettavaksi. Toimenpiteistä on tehtävä tarkka pöytäkirja. Jos tavara tarkastuksessa osottautuu hyvälaatuiseksi, s. o. lain määräyksiä vastaavaksi, maksetaan tavaran omistajalle pöytäkirjassa osotettu näytteen hinta. Saamansa tiedot on tarkastusmiesten pidettävä salassa, muutoin heitä rangaistaan kuten liikesalaisuuden ilmaisemisesta ja virkavirheestä. Jotka säilyttävät, valmistavat tai pitävät kaupan voita, mikä sisältää yli 16% vettä tai mikä on anilini- tai muilla väreillä värjättyä tai johon on sekotettu sivuaineita, rangaistaan ensimäisellä kerralla sakoilla sataan ruplaan asti, toisella kerralla sakoilla 100 r. tai kuukauden vankeudella ja kolmannella kerralla syylliseltä kielletään kauppa tai valmistus yhdestä kuukaudesta 1 vuoteen asti.

Kun sanomalehdissä on näkynyt uutisia, että Helsingissä on 50% kokosrasvaa sisältävää voita myyty huonona voina 3 markalla kilo, olisi Suomessakin aika ryhtyä lainsäädännöllisiin toimenpiteisiin tässä asiassa, sillä tuollaisten uutisten tunnetuksi tuleminen ulkomaisille markkinoille voi aiheuttaa muutamain pennien alenemisen kilolta hyvällekin voille ja saada aikaan epäluottamusta suomalaisen tavaran laatuun.

4.7.22

Kaksoistuntuvärit

Kirjapainotaito 11, 1929

Kaksoistuntuvärejä on ollut käytännössä jo monia vuosia, mutta kun ne, ulkolaisista ammattilehdistä päätellen, taasen ovat tulleet yleisempään käyttöön viime aikoina, on niihin syytä kiinnittää huomiota. Aikaisemmin perusteltiin näiden värien käytön edullisuutta sillä, että niillä saa yhdellä painamisella aikaan saman tunnun kuin kaksoisautotypialla, kaksilla kliseillä. —Kuten tunnettua ei kaksoistuntuvärillä kuitenkaan saa sitä vaikutusta aikaankuin kaksoisautotypialla jos jälkimmäisessä menetelmässä käytetään kirkkaita värejä ja erittäinkin jos nämä käytetyt värit ovat toisiinsa nähden hyvin vastakkaisia.

Nykyinen kaksoistuntuvärien laajentunut käyttö johtuu siitä, että niillä voidaan saada aikaan syväpainoa muistuttava tuntu ja samalla kuitenkin voidaan paremmin hallita kuvan eri valovahvuuksia, jotka syväpainossa tahtovat hävitä. Kaksoistuntuvärien käyttö on siis sellainen tilapäinen menetelmä, jolla kirjapaino voi tyydyttää asiakkaan, joka värimallina tuo syväpainotuotteen ja tahtoo "juuri tällaista". Kilpailu syväpainon kanssa voi mielestämme tulla kysymykseen silloin, kun painos on pienenpuoleinen ja erittäinkin jos tilaajalla on kuvalaatat kaikessa tapauksessa valmiina. Varjopuolena kaksoistuntuvärien käytössä on se, että ne ovat hitaasti kuivuvia ja että ne vaativat onnistuakseen aikaisemmin tapahtuvan koepainatuksen ja tiiviinpuoleisen sileäpintaisen paperin. Syväpainon etuna on se, että voidaan painaa pehmeäpintaiselle karhealle paperille, joka silmään vaikuttaa miellyttävämmältä kuin sileä kiiltävä paperi. —Paperi kaksoistuntuväriä käytettäessä tulee edellämainittujen seikkojen johdostakalliiksi ja jos taidepainopaperia käytetään, on painaessa käytettävä välistysarkkeja, mikä sekin osaltaan tuottaa hankaluutta ja nostaa painoksen hintaa. Mutta kaikessa tapauksessa, jos on tehtävä joku muotokuva kirjan alkuun tai eri arkkina painettavia liitteitä, voi ne useassa tapauksessa hyvällä syyllä painaa kaksoistuntuvärillä, erittäinkin jos alkuperäiset kuvat ovat jotain "taiteellisia hämyvalokuvia". Usein näkee lepokotien ym. sellaisten laitosten kuvitettuja esittelyvihkoja, jotka ovat painetut kaksoistuntuväreillä ja joissa se näkyy olevan paikallaan. Kaksoistuntuväreistä puhuttaessa on paikallaan muistaa vanha tapa suojata painokuva kirjassa silkkipaperilla. Tätä tapaa käytettiin aikaisemmin silloin, kun kirja oli kuvitettu teräspiirroksilla tai kuparipainoksilla. Suojapaperin tarkoituksena on estää kuvan tahriintuminen. Käytännöllisesti ajatellen olisi suojapaperia käytettävä ainoastaan silloin,kun väri on joko veteen tairasvaan liukenevaa ja siis tahriintuu esim. hikisten sormien kosketuksesta. Paitsi kuparipaino- ja osittain syväpainomenetelmässä on tällainen liukeneminen otettava huomioon myöskin kaksoistuntuväreissä, joissa sivutuntuväri on rasvaan liukenevaa. Tämä ohuen suojapaperinkäyttö on nykyään melkein kokonaan hävinnyt käytännöstä. Vielä vuosisadan vaihteessa näki teoksia, joissa tavallisen autotypian suojana oli ohut silkkipaperi ja vielä nykyäänkin on julkaistu teoksia, joissa esim. väripainoliitteet ovat suojatut yllämainitulla tavalla. Näissä jälkimmäisissä tapauksissa ei suojapapereilla ole mitään käytännöllistä merkitystä, mutta antavat kuvalle arvokkaan tunnun. Tämän vanhan tavan voisi taasen ottaa huomioon pienempipainoksisissa töissä ja miksei myöskin sellaisissa suuremmissa juhlajulkaisuissa, joissa eivät kustannukset ole määräävänä tekijänä ja joissa värin erikoisominaisuudet edellyttävät suojapaperin käyttöä kuten juuri kaksoistuntuvärejä sekä joitakin syväpainovärejä käytettäessä.

Kaksoistuntuvärien käytössä huomioonotettavien teknillisten seikkojen selventämiseksi liitämme tähän näitä värejä koskevan osan Gebhard Hartmannin kirjoitusta "Kuvaväreistä", joka on julkaistutämän lehden lokakuun numerossa 1927.

 

"Yksiväristenkuvien elävöittämiseksi painetaan usein samalla laatalla pohjaväri niittenpäälle antamalla vaalean värin luiskahtaa hiuskarvan verran puoleen taikka toiseen niin että puoli rasteripistettä näkyy vaaleana tumman vieressä. Myöskin voidaan tähän tarkoitukseen teettää kokonaan uudet laatat, joista halutut kohdat syövytetään heikommiksi tai stiklataan pois. Tällainen menetelmä tunnetaan kaksois- (duplex) autotypian nimellä.

Kaksoistuntuväreillä pyritään yhdellä värillä samaan vaikutelmaan kuin duplex-painamisella. Kaksoistuntuväreillä on se ominaisuus, että ne jonkun aikaa painamisen jälkeen kehittävät varsinaisen perusvärin oheen muitakin vivahduksia, usein muuttaen koko väritunnun. Jokaisenrastipisteen ympärille muodostuu jotain muuta väriä heijastava kehä. Tämä ominaisuus johtuu värin kokoomuksesta. Kaksoistuntuvärit ovat hyviä mustia tai värillisiä kuvavärejä joihinsivutunnun aikaansaamiseksi on sekoitettu rasvaan liukenevaa ja taipuisuutta lisäävää öljyvernissaa.

Koska väri usein kuivuessaan muodostuu aivan toisenlaiseksi kuin mitä se on painettaessa, on kaksoistuntuvärillä painamaan ruvettaessa huolellisesti valmistauduttava työhön. Halutun vaikutuksen aikaansaamiseksi on ensin käsitelan avulla vedettävä useampia koevedoksia jotta päästään selville minkälaisen värimäärän haluttu kuvatuntu edellyttää. Pienikin värimäärän eroavaisuus voi monissa väreissä paljon muuttaa sivutunnun vahvuuden ja suuremmat määräerot tietysti muuttavat päätunnunkin. Painoksen laatu on siis hyvin paljon riippuvainen koko työn aikanapidettävästä samasta värimäärästä. Painajien, joilla ei väriaisti ole erikoisen kehittynyt, on viisainta vetää kaksoistuntuvärivedoksen lisäksi samanvärinen vedos tavallisella värillä. Tätä voidaan painoksen aikana varmemmin kuin kaksoistuntuvedosta käyttää väritarkkailussa, koska tavallinen väri kuivuessaan muuttuu verrattain vähän. Vastaavat kaksoistuntuja tavallisella värillä vedetyt koevedokset on merkittävä samanlaisella merkillä että vedosten kuivuttua ja siis kaksoistuntuvedoksen muuttumisen jälkeen ollaan selvillä minkälaisella värimäärällä saatu tulos on syntynyt. Koevedoksia on käsiteltävä aivan kuten koko painostakin, siis väliarkit ja lisäksi kerros makulatuuria päälle ettei ilmapääse vaikuttamaan väriin kuivumisen aikana. Vedoksien tulee seistä väliarkeissa 12—15 tuntia ennenkuin lopullista värivaikutusta voidaan määritellä.

Sivutuntu on lopullinen vasta sitten, kun väri on kuivunut aivan kovaksi, mikä vie aikaa useita päiviä, joissakin tapauksissa viikonkin. Kuivausaineita käyttämällä voidaan väritunnun kehitysaikaa kyllä lyhentää, mutta siinä tapauksessa että sellaisia käytetään, on myöskin koevedoksissa tehtävä samoin. Koevedoksen kuivaaminen lämmittämällä on hyvin vaarallinen temppu, joka voi aiheuttaa koko seuraavan painoksen pilaantumisen syystä että väriaine luonnollisella tavalla kuivumalla säilyttää kokoomuksensa toisenlaisena ja antaa myöskin toisenlaisen vaikutuksen kuin lämmön vaikutuksesta kuivuessaan. Repimistä vastaan voidaan käyttää samoja menetelmiä kuin tavallisillakin väreillä painettaessa. Petrooli ja muut rasvalisäkkeet eivät kelpaa. Jos sivuvivahdusta tahdotaan vaimentaa kelpaavat kaikki kuvavärit sekoitusväreiksi. Käytettäessä toista väriä sekoitusvärinä on ensin otettava selvää ilmeneekö käytettävässä värissä itsessään joku sivutuntu, joka painamisen jälkeen voisi vaikuttaa huonontavasti lopputulokseen.

Tutkittaessa josko ja mitä rasvaan liukenevia värejä käytettävä sekoitusväri mahdollisesti sisältää, asetetaan väriä pikkusen veitsenkärjellä paperille. Hetken kuluttua näkyy värissä ilmenevä sivutuntu paperin toisella puolella. Mutta ei yksin värillä, vaan myöskin paperiaineella on suuri merkitys kaksoistuntupainoksen onnistumisessa. Paperin erilainen kokoomus, erilainen huokospitoisuus ja jopa niinkin pieni tekijä kuin tavallisen paperin eri puolien pintaero saattaa painoksen laatuun vaikuttaa paljon. Painettaessa papereille joiden suhdetta kaksoistuntuväriin ei tunneta, on välttämätöntä ottaa koevedos muutama päivä ennen painamista. Tämä koskee erittäinkin vastahankittuja papereja, koska kaksoistuntuväri on erittäin arkaa kosteuden vaikutuksille, ja saattaa laiminlyönti tässä suhteessa käydä hyvinkin kohtalokkaaksi painokselle. Samasta syystä on myöskin painoksen säilyttäminen kosteissa paikoissa varomatonta.

Usein tavattava epäkohta kaksoistuntuvärillä painettaessa on se, että väri tunkeutuu paperin lävitse. Niinpä saattaa vahvemmassa värityksessä sivutuntu näkyä selvästi paperin toisella puolella. Asiaa ei voida auttaa muulla kuin väriä vähentämällä.

Sivutunnun aikaansaavat väriainekset eivät ole erikoisen valoakestäviä jonka takia ei kaksoistuntuväri sovellu töihin jotka tulevat pitempiaikaisen valon vaikutuksen alaiseksi. Mutta ei yksistään valo vaan myöskin aika vaikuttaa haihduttavasti kaksoistuntupainokseen. Sentakia se ei ole sopiva väriteoksiin joilla on pysyvä arvonsa, mutta voidaan tällöin vastaavaa vaikutusta haluttaessa käyttää kaksoisautotypiaa.

Suuremman kaksoistuntupainoksen jälkeen voidaan huomata että sivutunnun aikaansaavaa väriainetta on tarttunut ja jäänyt hytyteloihin. Seuraavissapainoksissa vaikuttaa tämä jäännös jonkun verran ja olisi tällaisen painoksen jälkeen senvuoksi sovitettava koneeseen joku vähemmänarka työ ellei teloja kokonaan voida vaihtaa."

 

Kuten ylläolevasta kirjoituksesta huomataan on kaksoistuntuväreillä painamisen onnistuminen suurimmalta osalta kokeilun ja painajan oman kokemuksen varassa. Järkevä painaja voi kuitenkin jotässä esitettyjen seikkojen nojalla välttää monta kommellusta.

- A. A. Alén