Kutoma- ja paperiteollisuus 10, 1909
Omituisen tavan lakeerata mustaksi kiiltäviä koneosia kuten voimajohtoja y. m. mainitsee eräs ulkolainen ammattilehti. Kyseessäoleva rautaesine tehdään pinnaltaan puhtaaksi jollain puhdistusaineella ja sivellään sille sittemmin sulaa maavahaa eli ozokeritiä. Tämä sytytetään palamaan ja kun tämä on tapahtunut jää raudan pinnalle kova ja musta lakeeraus, joka kestää kaikkia ulkonaisia vaikutuksia, vieläpä happoja ja emäksiäkin. Menettelytapaa sopii koetella, sillä yksi hyvä puoli sillä ainakin on, se kun on näet hyvin huokeaa.
Coloriasto on väriaiheisten tekstien (ja kuvien) verkkoarkisto
(Archive for colour themed articles and images)
INDEX: coloriasto.net
29.4.14
Kansallispuvuista IV. Poikin vai pitkinkö raidat?
Käsiteollisuus 5-6, 1910
Pienempiä määriä kansallispukukangasta kudottaessa on tietenkin edullisinta laatia raidat poikki kankaan, kuteen suuntaan. Tällöin on tilaisuus samoja loimia käyttäen kutoa useampia eri mallisia kankaita. Voidaanhan esim. saada kudelanka kokonaan kuosin määrääväksi ja loimet aivan peittoon, jos kangas on luotu harvaan kaiteeseen ja käytetään kuderipsisitousta, kudeatlassiatai kudetoimikasta. Puolivillaista kutoessa ei tietenkään muu kuin kuteen suuntainen raidoitus voikkaan tulla kysymykseen. Raitojen ollessa poikki kankaan, on muistettava se luoda niin leveäksi, lähemmä 100 cm., että siitä riittää hameen pituudeksi.
Huomioon otettavat edut aiheutuu toiselta puolen raitojen asettamisesta loimien suuntaan. Kun tällöin ei tarvitse käyttää kuin yhdenväristä kudetta, niin aiheutuu kutominen tällöin paljon joutuisammaksi kuin mitä on asianlaita kuderaitoja laskiessa ja kudelankaa vaihtaessa. Tällöin on työtä jouduttava heittosukkulan käyttökin enemmäksi hyödyksi. Näin ollen on tämmöinen raitojen suunta eduksi varsinkin ammattikutojille, jotka tavallisesti aina valmistavat kokonaisen pakan samaa kangasta. Ja kauppakotiteollisuuden harjoittajiinhan meidän on turvautuminen, jos mieli saada kansallispuvut oikein yleiseen käytäntöön.
Täysivillaisiin, mutta varsinkin puuvillaisiin kankaisiin loimiraidat soveltuvat. Tosin kansan keskuudessa puuvillaisten kansallispukukankaitten käyttö on ollut harvinaisempaa. Mutta tämä on aiheutunut siitä, että siihen "vanhaan hyvään aikaan" ei tätä raaka-ainetta maassamme tunnettu. Kun hyviä värejä jo saadaan puuvillaankin pystymään, niin on mielestäni oikeutettua tämänkin aineksen kansallispukuihin otto, semminkin kun tämän kautta saadaan meillä puvut varattomammillekkin ja arkioloissa käytäntöön. Kutouksena tulee tällöin paraastaan käytettäväksi loimivoittoista toimikasta tai atlassia. - Ettei villainen loimi tässä sovi yhtä hyvin kuin puuvillainen, on selvää, sillä tuleehan tässä käytäntöön tiheänlainen kaide, joka kaikenlaiselle villalangalle ei ole eduksi.
Loimen suuntaisesta raidoituksesta on vielä se huomattava etu, että kangas voidaan luoda kapeanlainen, noin 80 cm., ja kuintenkin sovittaa kaikenlaisiin hamekokoihin.
Myönnettäköön, etiä kuderaidoitus aiheuttaa työn enemmän taiteellisen luovaksi ja siten käsin työskentelijälle ihanteellisemmaksi. Mutta jos mielimme säilyttää kansallispukankaitten valmistuksen kotiteollisuuden piirissä, on meidän annettava oma arvonsa sille melkoiselle työn joudutukselle, joka loimiraidoituksen kautta on saavutettavissa, ja sen vuoksi sitäkin omaan tarpeeseensa puollettava.
Pienempiä määriä kansallispukukangasta kudottaessa on tietenkin edullisinta laatia raidat poikki kankaan, kuteen suuntaan. Tällöin on tilaisuus samoja loimia käyttäen kutoa useampia eri mallisia kankaita. Voidaanhan esim. saada kudelanka kokonaan kuosin määrääväksi ja loimet aivan peittoon, jos kangas on luotu harvaan kaiteeseen ja käytetään kuderipsisitousta, kudeatlassiatai kudetoimikasta. Puolivillaista kutoessa ei tietenkään muu kuin kuteen suuntainen raidoitus voikkaan tulla kysymykseen. Raitojen ollessa poikki kankaan, on muistettava se luoda niin leveäksi, lähemmä 100 cm., että siitä riittää hameen pituudeksi.
Huomioon otettavat edut aiheutuu toiselta puolen raitojen asettamisesta loimien suuntaan. Kun tällöin ei tarvitse käyttää kuin yhdenväristä kudetta, niin aiheutuu kutominen tällöin paljon joutuisammaksi kuin mitä on asianlaita kuderaitoja laskiessa ja kudelankaa vaihtaessa. Tällöin on työtä jouduttava heittosukkulan käyttökin enemmäksi hyödyksi. Näin ollen on tämmöinen raitojen suunta eduksi varsinkin ammattikutojille, jotka tavallisesti aina valmistavat kokonaisen pakan samaa kangasta. Ja kauppakotiteollisuuden harjoittajiinhan meidän on turvautuminen, jos mieli saada kansallispuvut oikein yleiseen käytäntöön.
Täysivillaisiin, mutta varsinkin puuvillaisiin kankaisiin loimiraidat soveltuvat. Tosin kansan keskuudessa puuvillaisten kansallispukukankaitten käyttö on ollut harvinaisempaa. Mutta tämä on aiheutunut siitä, että siihen "vanhaan hyvään aikaan" ei tätä raaka-ainetta maassamme tunnettu. Kun hyviä värejä jo saadaan puuvillaankin pystymään, niin on mielestäni oikeutettua tämänkin aineksen kansallispukuihin otto, semminkin kun tämän kautta saadaan meillä puvut varattomammillekkin ja arkioloissa käytäntöön. Kutouksena tulee tällöin paraastaan käytettäväksi loimivoittoista toimikasta tai atlassia. - Ettei villainen loimi tässä sovi yhtä hyvin kuin puuvillainen, on selvää, sillä tuleehan tässä käytäntöön tiheänlainen kaide, joka kaikenlaiselle villalangalle ei ole eduksi.
Loimen suuntaisesta raidoituksesta on vielä se huomattava etu, että kangas voidaan luoda kapeanlainen, noin 80 cm., ja kuintenkin sovittaa kaikenlaisiin hamekokoihin.
Myönnettäköön, etiä kuderaidoitus aiheuttaa työn enemmän taiteellisen luovaksi ja siten käsin työskentelijälle ihanteellisemmaksi. Mutta jos mielimme säilyttää kansallispukankaitten valmistuksen kotiteollisuuden piirissä, on meidän annettava oma arvonsa sille melkoiselle työn joudutukselle, joka loimiraidoituksen kautta on saavutettavissa, ja sen vuoksi sitäkin omaan tarpeeseensa puollettava.
28.4.14
Ett behagligt nordligt rum.
Lördagen 37, 16.9.1905
Ett rum, som genom sitt läge mot norr är mer eller mindre otrefligt, kan betydligt förbättras genom sin möblering. Tapeterna böra vara af varm gul färg, ined guirlander af olivgrönt och guld samt lite rödt i borden. Måla allt träarbete med gullivit färg och skugga de elektriska ljusen eller lamporna med rikt rödt siden eller silkespapper. Betäck golfvet med en matta i oliv, gulbrunt, gullivitt och rödt samt använd möbleraf gyllenek. Öfver rullganlinema, som böra vara gulhvita, böra hängas fina, hvita spetsgardiner. Sätt en vacker växt i fönstret och lägg några böcker på ett litet bord. Om där finns plats för en soffa, så köp ett öfverdrag, som står i harmoni med mattan, och lägg på den en mängd kuddar i rödt och oliv. Några goda fotografier och taflor bidraga också mycket till att göra ett mörkt, otrefligt rum till ett varmt och trefligt.
Ett rum, som genom sitt läge mot norr är mer eller mindre otrefligt, kan betydligt förbättras genom sin möblering. Tapeterna böra vara af varm gul färg, ined guirlander af olivgrönt och guld samt lite rödt i borden. Måla allt träarbete med gullivit färg och skugga de elektriska ljusen eller lamporna med rikt rödt siden eller silkespapper. Betäck golfvet med en matta i oliv, gulbrunt, gullivitt och rödt samt använd möbleraf gyllenek. Öfver rullganlinema, som böra vara gulhvita, böra hängas fina, hvita spetsgardiner. Sätt en vacker växt i fönstret och lägg några böcker på ett litet bord. Om där finns plats för en soffa, så köp ett öfverdrag, som står i harmoni med mattan, och lägg på den en mängd kuddar i rödt och oliv. Några goda fotografier och taflor bidraga också mycket till att göra ett mörkt, otrefligt rum till ett varmt och trefligt.
27.4.14
Saksan vientikauppa.
Nykyaika 15-16, 30.8.1898
Bibliothéque Universelle.
Siinä taistelussa, jota suuret teollisuusmaat viimeisinä vuosikymmeninä ovat käyneet herruudesta vientikaupan alalla, alkaa yhä enemmän näyttää siltä kuin Saksa saisi voiton. Tämä tosiasia on, kuten luonnollista, herättänyt "kiusallista huomiota" kilpailijoissa ja ovat he innolla alkaneet tutkia Saksan vientikaupan sotasuunnitelmaa tässä rauhallisessa vieraiden maiden
valloituksessa.
Eräänä Saksan parhaimmista varustuskeinoista mainitaan vientiyhdistykset. Niitä on paljon ympäri Saksaa, mutta erittäin ansaitsee niiden joukossa Sachsin vientiyhdistys mainitsemista ja on sen toiminta kaikkien muiden esikuvana. Se perustettiin toukokuussa 1885; jo lokakuussa samana vuonna oli siinä 200 jäsentä. Ne maksavat 20 mk. vuotuisesti saaden siitä hinnasta luokseen lähetetyiksi kaikki yhdistyksen kirjat - ja nämä kirjoitukset ovat kullanarvoisia - sekä neliömetrin lattia-alan niissä tuotantonäyttelyissä, joita yhdistys joka vuosi toimeenpanee Dresdenissä. Päätyönä ei yhdistyksellä kuitenkaan ole näyttelyjen toimeenpano, vaan kauppamatkustajakin lähetys, jotka kautta maailman koettavat hankkia yhdistyksen jäsenten tuotteille pääsöä vieraille markkinoille. Nyt on yhdistyksellä kiinteitä tai matkustavia asiamiehiä Afrikassa, Bulgariassa, Kanadassa, Etelä-Amerikassa, Algierissa - ja ylipäänsä kaikkialla, missä luulisi olevan vähimmän toivoa saksalaisen tavaran menekistä. Mutta näitä asiamiehiä ei lähetetä umpimähkää. Ensin tutkitaan paikat, mitä mahdollisuuksia ne voivat kaupalle tarjota. Sitä varten lähetetään soveliaita miehiä vakoilemaan; kymmenessä vuodessa 1886-96 käytettiin sellaisiin edeltäviin tutkimuksiin 380,000 mk. Ensimäisen tällaisen "löytömatkan" tuloksena oli seikkaperäinen kauppasuhteellinen tutkimus Venezuelasta, Ekvadorista, Perusta, Boliviasta, ja Chilestä, toinen tarkoitti itäistä Eurooppaa, kolmas Meksikoa j. n. e. ja soveliaisiin paikkoihin matkustaville asiamiehille lähetetään kaikellaisia ilmoituksia, hintaluetteloja, kataloogeja, -monet näistä ovat kokonaisia albumeja mitä kallisarvoisimmassa asussa. Sen lisäksi tavaranäytteitä ja malleja. Ja kotiin lähettävät asiamiehet, ei ainoastaan määräyksiään, vaan arvokkaita "vihjauksiaan" ja "ohjauksiaan", jotka sopimusten mukaisten vihkosten muodossa toimitetaan yhdistyksen jäsenille. Näissä vihkosissa kuvaa asiamies uusien markkinoiden laatua ynnä niiden vaatimuksia, viittaa, mitä olisi tehtävä niiden valloittamiseksi - ja antaa ennen kaikkea tarkat tiedot siitä, mitä erityisiä ominaisuuksia tavaroilla tulee olla soveltuakseen uusien kauppaystävien makuun. Ja ameriikalaiset, englantilaiset, tanskalaiset ja itävaltalaiset konsulit valittavat kertomuksissaan, että nämä saksalaiset tunkeutuvat kuin rutto muiden kansojen alalle, -että ne eivät ainoastaan valloita uusia markkinoita, vaan vetävät pois vanhatkin kauppatuttavuudet kansoilta, joilla olisi ennakko-oikeus herruuteen vanhoilla kauppapaikoilla.
Mitä konsuleihin tulee, niin käyttävät saksalaiset, kuten tunnettu, näitä mitä suurimmassa määrässä ja vaativat heiltä väsymätöntä työtä kaupan hyväksi, nopeita kertomuksia ja tyydyttäviä tietoja. Nämä konsulien tiedonannot lähettää vientiyhdistys myös kaikille jäsenilleen, - ei ainoastaan paljaita tosiasioita, mutta myös hallituksen tekemät johtopäätökset ja neuvot tavaran tuotannon ja menekin suhteen. Koko koneisto toimii suurella varmuudella ja maalle arvaamattomaksi hyödyksi.
Kuten näkyy, on tälläkin alalla yhteistyön periaate päässyt voimaan. Ei auta enää, että kukin tehtailija toimii itsekseen ja lähettää tavaransa maailmaan oman päänsä jälkeen ja umpimähkää. Nyt on taistelu niin kova, ettei voittoa voida saavuttaa hajanaisella sissisodalla ja taisteluala on niin lavea, ettei sitä kenenkään yksityisen silmä voi kokonaisuudessaan mitata. Siis: suljetut rivit, partiojoukkoja niiden edelle ja viisas yläjohto ohjaamaan taistelun kulkua.
***
Kas tässä pari esimerkkiä, miten saksalainen osaa mukautua ostajainsa makuun.
Kiinaan lähetettävien tavaroiden suhteen on etupäässä huomattava niiden väri. Siitä riippuu kokonaan, tulevatko ne miellyttämään vai ei. Mustaa ja viheriää tulee välttää, ne kaksi väriä ovat kiinalaisen silmissä onnettomuuden merkkejä ja johtavat kaikissa tapauksissa ihmisajatuksen suruun. Eräs englantilainen kauppias lähetti kerran suuren joukon erinomaisianeuloja, hienoja ja halpoja, Kiinaan - ja hävisi kamalasti. Saksalainen tehtailija lähetti myös lähetyksen neuloja, jotka eivät olleet niin hienoja eivätkä niin halpoja, - mutta ne menivät kaupaksi kuin lämmin leipä ja mies ansaitsi mainiosti. Syy: saksalainen oli käärinyt neulansa punaiseen paperiin - englantilainen mustaan.
Eräs Saksalainen tehtailija hävisi äskettäin hirveästi lähettäessään Kiinaan almanakkoja. Ne olivat sidotut viheriään siteeseen eivätkä kiinalaiset tahtoneet niitä ilmaiseksikaan. Toiselle kävi samoin, joka lähetti Kiinaan joukon aivan erinomaisia hevosenkenkiä, eikä hän voinut ensin syytä keksiä. Mutta hän oli sattunut valitsemaan tehtaanleimakseen lohikäärmeen, joka on pyhä olento Kiinassa, ja vinosilmäiset taivaanpojat tunsivat moraalista suuttumusta ajatellessaan, että heidän pyhyytensä näin tulisi tallatuksi hevosen kavioiden alle.
Ameriikalaisille pitää taas kaikki asioimiskirjeet suorittaa kirjoituskoneella, - arvoisilla jenkiiseillä ei ole mitään halua ruveta tutkimaan enemmän tai vähemmän yksilöllisiä käsialoja. Ja mitä sisällykseen tulee, ei saa kavahtaa reklaamin toitotusta. Jenkiisit itse suosittavat tavaroitaan aina superlatiiveissa ja kuka ei uskalla samaa nuottia vetää, näyttää heistä vähemmän luottamusta herättävältä.
Vielä opettavat asiamiehet tehtailijoille, mikä on minkin tavaran paras matkapuku. Ennen olivat saksalaiset usein huolimattomat lähetyksiensä ulkomuodon suhteen, - nyt on toisin. Lisäksi tulee, että asiamiehet ilmoittavat sähköteitse kaikki, mitä minkin maan äärissä tapahtuu, jokaisen valtiollisen, yhteiskunnallisen, taiteellisen tai seuraelämän risauksen ja lähettävät valokuvia henkilöistäja paikoista, jotka kulloinkin ovat huudossa. Siten voi tapahtua, että saksalaiset vientiporsliinit ja lasit, nahkaplastilliset teokset, metalliasetit ja tuhka-astiat ovat kaunistetut Venezuelan viimeisen paikallissankarin kuvalla, - tai koreilee niissä viime viikkoinen Montevideon mielilaulajatar tai vasta valittu Uruguayn presidentti.
Tämän nopean ja sitkeän taistelun tulokset ovat niin silmiin pistävät ja Saksalle edulliset, etteivät ulkomaiset konsulit voi olla sitä huomaamatta. Niinpä valittaa Englannin konsuli Aleppon kaupungista Syyriasta: "Vastoin tahtoani tulen minä yhä epä-englantilaisemmaksi. Kenkäni ovat Ranskasta, vaatteeni Saksasta, tuolit minun toimistossani ovat saksalaista työtä, samoin kynäni, paperini ja lattiamattoni. Jopa oluenikin on saksalaista, - jokapäiväinen lähetys Strassburgista. Kohta ei minulla ole muuta englantilaista konttorissani kuin luuni ja lihani ja aina muuttumaton englantilainen mieleni. Surulla täytyy minun tosiasiaksi merkitä, että me englantilaiset joudumme päivä päivältä yhä enemmän taaksepäin täällä Syyriassa. Lähettäkää sentähden tänne asiamiehiä, tehkää työtä - mutta uusien suunnitelmain mukaan! Me olemme tähän asti seuranneet sääntöä, että koko maailman tuli englantilaistua ja ostajien taipuameidänmakumme mukaan; mutta nyt olkoon se lopussa. Me saamme luvan saksalaisten tavalla mukautua ostajiemme makuun, - tai meidät hukka perii. Muistakoot Lancashireläiset, miten kävi heidän silkkihuiveilleen Venäjällä. Venäläiset talonpoikaistytöt heittävät nämä huivit päänsä ympäri ja tahtovat ne sitä varten neliskulmaisiksi, mutta Lancashiren hyvät kankurit kutoivat vain soikeita, - ja koneitaan he eivät tahtoneet ruveta muuttamaan vain pelkän venäläisen naisoikun takia. Niin täytyi talonpoikaistyttöjen yhä koristaa itseään soikeilla huiveilla, kunnes saksalaiset tulivat neliskulmaisineen. Siitä iloitsevat venäläistytöt - ja saksalaiset; mutta luultavasti eivät englantilaiset. Sillä nyt ei myödä yhtään heidän huiveistaan enää Venäjällä. Muistakaamme myös serbialaisia kyökkiveitsiä. Serbialainen käyttää kyökkiveistään moneen tarkoitukseen, johon englantilainen sitä ei ikinä käytä; hän tahtoo sen käyräksi ja varsipuolelta leveäksi. Mutta Manchesterin hyvät isännät tuumivat, että veitset, joilla englantilainen tuli toimeen, olisivat kyllin hyvät serbialaisillekin. Niin olikin - hetkisen; paremman puutteessa käytti serbialainen englantilaisia kyökkiveitsiä, leikkasi sormiinsa, taittoi veitsistä terät - vähäksi iloksi itselleen, mutta sitä suuremmaksi englantilaisille tehtailijoille. Mutta silloin tulivat saksalaiset. Ja seuraus? - Katso juttua soikulaisista silkkihuiveista. Samallaisia esimerkkejä voitaisiin luetella kuinka monta tahansa. Sentähden täytyy Muhamedin vielä kerran päättää mennä vuoren luo, sillä on vähemmin luultavaa, että vuori tulee Muhamedin luo".
***
Tässä on mainittu pääsyyt Saksan vientikaupan suuremmoiseen kukoistukseen. Mutta ne yksistään eivät riittäisi, ellei Saksalla olisi niin onnistunutta vientisatamaa kuin Hamburg, tuo vanha hansakaupunki, josta vuosisatojen vakaannuttamine maailmankauppoineen, kauppasiirtoloineen kaikissa maissa, ulos ja sisään käyvine kauppateineen tuli uiko- ja kotimaan luonnollinen yhtymäpaikka ja perusta, mistä vienti voi uusia uriaan suunnitella.
Eikä myöskään saa unohtaa sitä asianhaaraa, joka on hankkinut saksalaisille voiton muillakin liike-elämän aloilla, ja se on heidän erinomainen teknillinen sivistyksensä. Se on tehnyt heidät kykeneviksi tuottamaan tavaroita, jotka voivat kilpailla vanhempain teollisuuskansojen kanssa, se on tehnyt heidät sekä henkeviksi että käteviksi mukautumaan uusien ostajainsa maun mukaan. Tieteellinen tutkimus käy Saksassa käsi kädessä käytännöllisen teollisuuden kanssa, - ne kaksi yhtyvät erinomaisessa teknillisessä opetuksessa. On sanottu, että ne olivat saksalaiset koulumestarit, jotka 1870 voittivat Ranskan. Meidän aikanamme voittavat saksalaiset teknikot yhtä suuria voittoja maalleen ja yhtä tärkeitä aloja kuin vuoden 1870 veriset sotatantereet.
(M. Readerin mukaan)
Bibliothéque Universelle.
Siinä taistelussa, jota suuret teollisuusmaat viimeisinä vuosikymmeninä ovat käyneet herruudesta vientikaupan alalla, alkaa yhä enemmän näyttää siltä kuin Saksa saisi voiton. Tämä tosiasia on, kuten luonnollista, herättänyt "kiusallista huomiota" kilpailijoissa ja ovat he innolla alkaneet tutkia Saksan vientikaupan sotasuunnitelmaa tässä rauhallisessa vieraiden maiden
valloituksessa.
Eräänä Saksan parhaimmista varustuskeinoista mainitaan vientiyhdistykset. Niitä on paljon ympäri Saksaa, mutta erittäin ansaitsee niiden joukossa Sachsin vientiyhdistys mainitsemista ja on sen toiminta kaikkien muiden esikuvana. Se perustettiin toukokuussa 1885; jo lokakuussa samana vuonna oli siinä 200 jäsentä. Ne maksavat 20 mk. vuotuisesti saaden siitä hinnasta luokseen lähetetyiksi kaikki yhdistyksen kirjat - ja nämä kirjoitukset ovat kullanarvoisia - sekä neliömetrin lattia-alan niissä tuotantonäyttelyissä, joita yhdistys joka vuosi toimeenpanee Dresdenissä. Päätyönä ei yhdistyksellä kuitenkaan ole näyttelyjen toimeenpano, vaan kauppamatkustajakin lähetys, jotka kautta maailman koettavat hankkia yhdistyksen jäsenten tuotteille pääsöä vieraille markkinoille. Nyt on yhdistyksellä kiinteitä tai matkustavia asiamiehiä Afrikassa, Bulgariassa, Kanadassa, Etelä-Amerikassa, Algierissa - ja ylipäänsä kaikkialla, missä luulisi olevan vähimmän toivoa saksalaisen tavaran menekistä. Mutta näitä asiamiehiä ei lähetetä umpimähkää. Ensin tutkitaan paikat, mitä mahdollisuuksia ne voivat kaupalle tarjota. Sitä varten lähetetään soveliaita miehiä vakoilemaan; kymmenessä vuodessa 1886-96 käytettiin sellaisiin edeltäviin tutkimuksiin 380,000 mk. Ensimäisen tällaisen "löytömatkan" tuloksena oli seikkaperäinen kauppasuhteellinen tutkimus Venezuelasta, Ekvadorista, Perusta, Boliviasta, ja Chilestä, toinen tarkoitti itäistä Eurooppaa, kolmas Meksikoa j. n. e. ja soveliaisiin paikkoihin matkustaville asiamiehille lähetetään kaikellaisia ilmoituksia, hintaluetteloja, kataloogeja, -monet näistä ovat kokonaisia albumeja mitä kallisarvoisimmassa asussa. Sen lisäksi tavaranäytteitä ja malleja. Ja kotiin lähettävät asiamiehet, ei ainoastaan määräyksiään, vaan arvokkaita "vihjauksiaan" ja "ohjauksiaan", jotka sopimusten mukaisten vihkosten muodossa toimitetaan yhdistyksen jäsenille. Näissä vihkosissa kuvaa asiamies uusien markkinoiden laatua ynnä niiden vaatimuksia, viittaa, mitä olisi tehtävä niiden valloittamiseksi - ja antaa ennen kaikkea tarkat tiedot siitä, mitä erityisiä ominaisuuksia tavaroilla tulee olla soveltuakseen uusien kauppaystävien makuun. Ja ameriikalaiset, englantilaiset, tanskalaiset ja itävaltalaiset konsulit valittavat kertomuksissaan, että nämä saksalaiset tunkeutuvat kuin rutto muiden kansojen alalle, -että ne eivät ainoastaan valloita uusia markkinoita, vaan vetävät pois vanhatkin kauppatuttavuudet kansoilta, joilla olisi ennakko-oikeus herruuteen vanhoilla kauppapaikoilla.
Mitä konsuleihin tulee, niin käyttävät saksalaiset, kuten tunnettu, näitä mitä suurimmassa määrässä ja vaativat heiltä väsymätöntä työtä kaupan hyväksi, nopeita kertomuksia ja tyydyttäviä tietoja. Nämä konsulien tiedonannot lähettää vientiyhdistys myös kaikille jäsenilleen, - ei ainoastaan paljaita tosiasioita, mutta myös hallituksen tekemät johtopäätökset ja neuvot tavaran tuotannon ja menekin suhteen. Koko koneisto toimii suurella varmuudella ja maalle arvaamattomaksi hyödyksi.
Kuten näkyy, on tälläkin alalla yhteistyön periaate päässyt voimaan. Ei auta enää, että kukin tehtailija toimii itsekseen ja lähettää tavaransa maailmaan oman päänsä jälkeen ja umpimähkää. Nyt on taistelu niin kova, ettei voittoa voida saavuttaa hajanaisella sissisodalla ja taisteluala on niin lavea, ettei sitä kenenkään yksityisen silmä voi kokonaisuudessaan mitata. Siis: suljetut rivit, partiojoukkoja niiden edelle ja viisas yläjohto ohjaamaan taistelun kulkua.
***
Kas tässä pari esimerkkiä, miten saksalainen osaa mukautua ostajainsa makuun.
Kiinaan lähetettävien tavaroiden suhteen on etupäässä huomattava niiden väri. Siitä riippuu kokonaan, tulevatko ne miellyttämään vai ei. Mustaa ja viheriää tulee välttää, ne kaksi väriä ovat kiinalaisen silmissä onnettomuuden merkkejä ja johtavat kaikissa tapauksissa ihmisajatuksen suruun. Eräs englantilainen kauppias lähetti kerran suuren joukon erinomaisianeuloja, hienoja ja halpoja, Kiinaan - ja hävisi kamalasti. Saksalainen tehtailija lähetti myös lähetyksen neuloja, jotka eivät olleet niin hienoja eivätkä niin halpoja, - mutta ne menivät kaupaksi kuin lämmin leipä ja mies ansaitsi mainiosti. Syy: saksalainen oli käärinyt neulansa punaiseen paperiin - englantilainen mustaan.
Eräs Saksalainen tehtailija hävisi äskettäin hirveästi lähettäessään Kiinaan almanakkoja. Ne olivat sidotut viheriään siteeseen eivätkä kiinalaiset tahtoneet niitä ilmaiseksikaan. Toiselle kävi samoin, joka lähetti Kiinaan joukon aivan erinomaisia hevosenkenkiä, eikä hän voinut ensin syytä keksiä. Mutta hän oli sattunut valitsemaan tehtaanleimakseen lohikäärmeen, joka on pyhä olento Kiinassa, ja vinosilmäiset taivaanpojat tunsivat moraalista suuttumusta ajatellessaan, että heidän pyhyytensä näin tulisi tallatuksi hevosen kavioiden alle.
Ameriikalaisille pitää taas kaikki asioimiskirjeet suorittaa kirjoituskoneella, - arvoisilla jenkiiseillä ei ole mitään halua ruveta tutkimaan enemmän tai vähemmän yksilöllisiä käsialoja. Ja mitä sisällykseen tulee, ei saa kavahtaa reklaamin toitotusta. Jenkiisit itse suosittavat tavaroitaan aina superlatiiveissa ja kuka ei uskalla samaa nuottia vetää, näyttää heistä vähemmän luottamusta herättävältä.
Vielä opettavat asiamiehet tehtailijoille, mikä on minkin tavaran paras matkapuku. Ennen olivat saksalaiset usein huolimattomat lähetyksiensä ulkomuodon suhteen, - nyt on toisin. Lisäksi tulee, että asiamiehet ilmoittavat sähköteitse kaikki, mitä minkin maan äärissä tapahtuu, jokaisen valtiollisen, yhteiskunnallisen, taiteellisen tai seuraelämän risauksen ja lähettävät valokuvia henkilöistäja paikoista, jotka kulloinkin ovat huudossa. Siten voi tapahtua, että saksalaiset vientiporsliinit ja lasit, nahkaplastilliset teokset, metalliasetit ja tuhka-astiat ovat kaunistetut Venezuelan viimeisen paikallissankarin kuvalla, - tai koreilee niissä viime viikkoinen Montevideon mielilaulajatar tai vasta valittu Uruguayn presidentti.
Tämän nopean ja sitkeän taistelun tulokset ovat niin silmiin pistävät ja Saksalle edulliset, etteivät ulkomaiset konsulit voi olla sitä huomaamatta. Niinpä valittaa Englannin konsuli Aleppon kaupungista Syyriasta: "Vastoin tahtoani tulen minä yhä epä-englantilaisemmaksi. Kenkäni ovat Ranskasta, vaatteeni Saksasta, tuolit minun toimistossani ovat saksalaista työtä, samoin kynäni, paperini ja lattiamattoni. Jopa oluenikin on saksalaista, - jokapäiväinen lähetys Strassburgista. Kohta ei minulla ole muuta englantilaista konttorissani kuin luuni ja lihani ja aina muuttumaton englantilainen mieleni. Surulla täytyy minun tosiasiaksi merkitä, että me englantilaiset joudumme päivä päivältä yhä enemmän taaksepäin täällä Syyriassa. Lähettäkää sentähden tänne asiamiehiä, tehkää työtä - mutta uusien suunnitelmain mukaan! Me olemme tähän asti seuranneet sääntöä, että koko maailman tuli englantilaistua ja ostajien taipuameidänmakumme mukaan; mutta nyt olkoon se lopussa. Me saamme luvan saksalaisten tavalla mukautua ostajiemme makuun, - tai meidät hukka perii. Muistakoot Lancashireläiset, miten kävi heidän silkkihuiveilleen Venäjällä. Venäläiset talonpoikaistytöt heittävät nämä huivit päänsä ympäri ja tahtovat ne sitä varten neliskulmaisiksi, mutta Lancashiren hyvät kankurit kutoivat vain soikeita, - ja koneitaan he eivät tahtoneet ruveta muuttamaan vain pelkän venäläisen naisoikun takia. Niin täytyi talonpoikaistyttöjen yhä koristaa itseään soikeilla huiveilla, kunnes saksalaiset tulivat neliskulmaisineen. Siitä iloitsevat venäläistytöt - ja saksalaiset; mutta luultavasti eivät englantilaiset. Sillä nyt ei myödä yhtään heidän huiveistaan enää Venäjällä. Muistakaamme myös serbialaisia kyökkiveitsiä. Serbialainen käyttää kyökkiveistään moneen tarkoitukseen, johon englantilainen sitä ei ikinä käytä; hän tahtoo sen käyräksi ja varsipuolelta leveäksi. Mutta Manchesterin hyvät isännät tuumivat, että veitset, joilla englantilainen tuli toimeen, olisivat kyllin hyvät serbialaisillekin. Niin olikin - hetkisen; paremman puutteessa käytti serbialainen englantilaisia kyökkiveitsiä, leikkasi sormiinsa, taittoi veitsistä terät - vähäksi iloksi itselleen, mutta sitä suuremmaksi englantilaisille tehtailijoille. Mutta silloin tulivat saksalaiset. Ja seuraus? - Katso juttua soikulaisista silkkihuiveista. Samallaisia esimerkkejä voitaisiin luetella kuinka monta tahansa. Sentähden täytyy Muhamedin vielä kerran päättää mennä vuoren luo, sillä on vähemmin luultavaa, että vuori tulee Muhamedin luo".
***
Tässä on mainittu pääsyyt Saksan vientikaupan suuremmoiseen kukoistukseen. Mutta ne yksistään eivät riittäisi, ellei Saksalla olisi niin onnistunutta vientisatamaa kuin Hamburg, tuo vanha hansakaupunki, josta vuosisatojen vakaannuttamine maailmankauppoineen, kauppasiirtoloineen kaikissa maissa, ulos ja sisään käyvine kauppateineen tuli uiko- ja kotimaan luonnollinen yhtymäpaikka ja perusta, mistä vienti voi uusia uriaan suunnitella.
Eikä myöskään saa unohtaa sitä asianhaaraa, joka on hankkinut saksalaisille voiton muillakin liike-elämän aloilla, ja se on heidän erinomainen teknillinen sivistyksensä. Se on tehnyt heidät kykeneviksi tuottamaan tavaroita, jotka voivat kilpailla vanhempain teollisuuskansojen kanssa, se on tehnyt heidät sekä henkeviksi että käteviksi mukautumaan uusien ostajainsa maun mukaan. Tieteellinen tutkimus käy Saksassa käsi kädessä käytännöllisen teollisuuden kanssa, - ne kaksi yhtyvät erinomaisessa teknillisessä opetuksessa. On sanottu, että ne olivat saksalaiset koulumestarit, jotka 1870 voittivat Ranskan. Meidän aikanamme voittavat saksalaiset teknikot yhtä suuria voittoja maalleen ja yhtä tärkeitä aloja kuin vuoden 1870 veriset sotatantereet.
(M. Readerin mukaan)
26.4.14
Palmuja.
Puutarha 11, 1902
Etelämainen, kuuman ilmanalan luonto eroaa suuresti meidän pohjoisen lauhkean ja kylmän ilmanalamme luonnosta. Runsas ja keskeymätön lämpö on tehnyt kasvikunnan sekä lajirikkaammaksi että myöskin laadultaan rehevämmäksi kuin meidän kasvikuntamme. Ihmetellen ja ihaillen luemme niisti lukemattomista kasveista, jotka siellä kaunistavat luontoa ja samalla monet tarjoovat ihmisille lahjojansa vaatimatta häneltä sen enempää työtä ja vaivaa, kuin että hän tulee niitä ottamaan. Esitämme tässä muutamia kuuman ilmanalan kasveja, jotka joko tarjoavat tällä tavalla tuotteitansa ihmisille tahi ovat muuten huomiota herättäviä.
Meilläkin tavataan yleisesti huonekasviemme joukossa fiikuksia. Nämä ovat etelämaisia kasveja, ja niitä on monen monta eri laiia. Ne kasvavat joko puiksi tahi pensaiksi ja ovat omituisia siitä, että niiden kukat eivät ole näkyvissä, vaan onton, mehevän päärunan kaltaisen "fiikunan" sisäpuolella, jonne paksummasta päästä vie ainoastaan ahdas aukko. Fiikunapuita kasvaa Intiassa, mutta myöskin Vähässä Aasiassa ja Euroopankin puolella Välimeren rantamaissa. Kypsyneinä ovat fiikunat syötäviksi kelpaavia sekä ihmisille että eläimille, ja puut antavat näitä hedelmiänsä kahdesti, jopa väliin kolmestikin vuoden kuluessa. Viiniköynnöksen ja öljypuun ohessa olivat ne myöskin muinoisen Palestinan rikkautena, ja raamatussa mainitaan usein fiikunapuuta. Ne ntavat hyvin tärkeitä ruoka-aineita, mutta myöskin kauppatavaraa; meilläkään eivät fiikunat ole harvinaisia ulkomaisten hedelmien joukossa. Muutamista fiikuslajeista saadaan myös kummilakkaa, jota valmistetaan siitä maitomaisesta, tahmeasta nesteestä, mitä runkoon pistetystä reijästä vuotaa.
Omituisimpia puita ovat fiikusten joukkoon kuuluvat baniaanipuut, joita kasvaa Intiassa. Runkoja näkee useita, mutta latva saattaa olla sama. Ja tämmöinen yhteinen latva saattaa olla sangen laaja, kokonainen lehto eli metsä. Kerrotaan Aleksanteri Suuren intialaisella sotaretkellään kerran koko joukkoineen majailleen semmoisen puun suojassa, ja sanotaan nytkin Intiassa olevan semmoisia metsiä, joissa on yli 3 tuhatta pienempää tahi suurempaa runkoa, mutta sama laaja latva, jonka alle voi viisikin ratsumiesrykmenttiä asettua suojaan. Tämmöisten metsien muodostuminen käy sillä tavalla, että kasvaneen puun latvasta alkaa alaspäin pistäytyä n. s. ilmajuuria, jotka maahan ulotuttuaan juurtuvat siihen ja kehittyvät rungoksi. Latva laajenee tietysti samassa määrässä kuin runkoja lisääntyy, ja laajentunut latva lähettää taas uusia ilmajuuria. Usein käy myös sillä tavalla, että linnut kuljettavat tämän puun siemeniä palmupuiden latvoihin ja ne itävät ja alkavat kasvaa siellä. Vähitellen lähettää tämmöinen loisena elänyt kasvi oman ilmajuurensa maahan ja sitten toisia jäljessä. Nämä vahvistuvat rungoiksi, joiden syleilystä palmu viimein kuihtuu ja kuolee. Ja näin on kutsumatta tullut vieras anastanut palmun paikan ja levittää siinä edelleen alaansa, laajentaen latvaansa sen mukaan kuin uudet ilmajuuret ulottuvat maahan, juurtuvat ja vahvistuvat rungoiksi. - Erästä lajia tämmöistä fiikusta pidetään Intiassa pyhänä puuna sen tähden, että muka Buddha maailmassa ollessaan opetti ihmisiä näiden varjossa.
Intiassa ja Kanarian saarilla kasvaa eräs joukko puita, joita nimitetään traseenoiksi. Ne ovat palmujen kaltaisia, usein hyvin korkeita puita, joilla on tukeva runko, mikä sitten latvassa saattaa jakautua hyvinkin moniksi haaroiksi ja oksiksi. Lehdet, joita on oksien kärjissä, ovat pitkiä, tasasoukkia taikka suippopäisiä. Oksien kärjissä ovat myöskin kukat, jotka tavallisesti ovat rypäleissä ja valkeita väriltään. Erästä lajia näistä sanotaan traakkipuuksi. Nämä voivat kasvaa hyvin korkeiksi ja paksuiksi. Kanarian saariryhmään kuuluvalla Teneriffan saarella on tavattu oikea jättiläispuu tätä lajia. Jo v. 1402, kun eurooppalaisia ensi kerran kävi tällä saarella, oli tämän runko yhtä paksu kuin v. 1868, jolloin hirmumyrsky sen kaasi. Se oli nimittäin 22 metriä pitkä ja tyvestä lähes 13 ½ metriä paksu ympärimitaten. Sen ikä laskettiin vähintäin 5 tuhanneksi vuodeksi. Traakkipuusta saadaan eräänlaatuista pilikamaista ainetta, jota nimitetään traakkivereksi. Puun runkoon leikataan haaroja, joista pihkaneste tihkuu ulos. Valmistettuna saa lian siitä väriainetta: mutta sitä on myöskin vanhoista ajoista saakka käytetty lääkkeenä. Traakkiverestä kallisarvoisena lääkkeenä puhuvat jo muutamat vanhan ajan viisaat, ja valmistettiin sitä luultavasti silloin jonkun Sokotran saarella kasvavan traseenalajin nesteestä. Nykyään tällä nimellä mainittavaa väriainetta, jota käytetään yleensä hammaspulverin ja muiden kaunistusaineiden värjäämiseen ja hyvänhajuiseksi tekemiseen, saadaan, paitsi edellä mainitulla tavalla traakkipuusta, myöskin n. s. traakkipalmusta, joka kasvaa Sumatran ja Borneon saarilla ja jonka varsia ovat meillä hyvin tunnetut rottingit. Nämä tasapaksut, joskus 200 metrin pituiset rungot ovat kietoutuneina muiden kasvien ympärille, ja hedelmästä valmistetaan tuota mainittua väriainetta. - Muutamia traseenalajeja käytetään meillä huonekasveina.
Erittäin huomattavan ryhmän kasvikunnassa muodostavat palmut, joita kasvaa kuumassa ilmanalassa ja joita tunnetaan enemmän kuin tuhat eri lajia. Kuuluisa kasvitutkija Linné nimittää niitä kasvimaailman ruhtinaiksi, koska ne yleensä ovat komeita, majesteetillisia nähdä ja ovat ihmisille suuresti hyödyllisiä. Toiset niistä kasvavat pensaina, jotkut pitkinä, toisissa puita kiertelevinä, niinkuin edellä mainittu rottinkipalmu, mutta useimmilla on tukeva runko, jossa nähdään kuihtuneiden ja poispudonneiden lehtien tyvinikamia tahi niiden arpia; lehtiä on kulloinkin ainoastaan latvassa, ja sen mukaan kuin runko kasvaa korkeammaksi, kuihtuvat alimmaiset lehdet. Muutamat palmulajit kasvavat niin korkeiksi, että niiden latvat muodostavat erityisen metsän muun tavallisen metsän yläpuolella, joten kaukaa katsellen metsä näyttää kaksikerroksiselta.
Syykas- eli käpypalmpu on intialainen kasvi. Se on omituinen siitä, että sen runkoa ympäröi kerros kantoja eli nastoja, jotka tekevät rungon kävyn näköiseksi. Lehdet ovat kokonaisuudessaan pitkiä ja kaitaisia, mutta oikeastaan siinä on suuri joukko kaitaisia pikkulehtiä, vähän leveämpiä ja litteämpiä kuin lihavan männyn neulaset, liittyneinä yhteiseen pitkään lehtiruotiin. Tämän palmun rungon ytimestä valmistetaan ravinnoksi kelpaavia, runsaasti tärkkelystä sisältäviä ryyniä tahi jauhoja, jotka eivät kuitenkaan ole yhtä hyviä, vaikka muuten samantapaisia, kuin saako palmun ytimestä saatavat saakoryynit. Syykas- eli käpypalmu on meillä kasvihuoneissa ja usein asuinhuoneissakin hoidettu kasvi, vaikka ei se ainakaan jäkimmäisissä kasva niin rehevästi, että sille ennättäisi tuota käpymäistä runkoa pilkaltakaan muodostua.
Hyödyllisimpien palmujen joukkoon kuuluu kookospalmu. joka on alkuaan kotoisin Intiasta ja Ison Valtameren saarilta, mutta on viljelyksen avulla niin levinnyt, että sitä kasvaa melkein kaikkialla päiväntasaajan seuduilla ympäri maapalloa. Se on pitkärunkoinen, noin 18-24 metriä korkea, komealatvainen puu ja kasvaa yleensä merien, jokien ja järvien rannoilla, missä on tarpeeksi kosteutta. Hedelmät, joita täysikasvuisissa puissa voi olla 200-300, ovat ihan sen pään kokoisia, kovakuorisia. Kuorta käytetään sorvaustöiliin. Sisusta on pehmeätä, löyhää, rihmamaista, karkeasyistä ainetta. Kookospalmu on seutunsa asukaille todellakin oikea sampo, sillä se hyödyttää heitä monen monituisella tavalla. Sen juuresta valmistavat monet kansat
pureksittavaksensa "mällejä," jotka vaikuttavat huumaavaisesti kuin tupakka meikäläisten suussa. Sen sitkeistä rungon sisäsyistä kudotaan koreja ja koppia. Rungon kovempaa pintapuolta käytetään rakennusaineina. Rungon alin osa on sangen tiivistä ja kovaa, ja kiillotettuna on se hyvin kaunista huonekaluina. Lehtivarsien syistä kudotaan karkeata kangasta, ja äskenpuhjenneista lehdistä valmistetaan erittäin herkullista palmukaalia. Täysikasvuiset lehdet kelpaavat kattoaineiksi ja moneen muuhun tarkoitukseen. Hedelmän kovan kuoren alla olevista karkeista syistä tehdään köysiä, harjoja j. n. e. Polttamalla saadaan lehdistä runsaasti potaskaa. Kukissa ja rungon monissa osissa on runsaasti sokeria sisältäviä mehua, josta käyttämällä saadaan oivallista palmuviiniä ja tislaamalla aarakkia. Keittäen voi tästä nesteestä saada myös karkeata sokeria. Tuon kovakuorisen hedelmän keskustana on kova, koloinen ja kookas siemen. Koloissa on maitomaista nestettä, n. s. kookosmaitoa. Se on semmoisenaan mainiota virkistävää ja ravitsevaista juomaa. Myöhemmin se jäähmettyy kiinteäksi, mantelinmakuiseksi aineeksi ja on silloin arvokasta ravintoa. Tästä valmistetaan myöskin n. s. palmuöljyä. Monta tuollaista puuta ei perhe tarvitse elääkseen, ja senpä tähden onkin kookospalmu hyvin suosittu ja viljelyksellä laajalti levitetty kasvi.
Kyläk. Kuval. A.
Etelämainen, kuuman ilmanalan luonto eroaa suuresti meidän pohjoisen lauhkean ja kylmän ilmanalamme luonnosta. Runsas ja keskeymätön lämpö on tehnyt kasvikunnan sekä lajirikkaammaksi että myöskin laadultaan rehevämmäksi kuin meidän kasvikuntamme. Ihmetellen ja ihaillen luemme niisti lukemattomista kasveista, jotka siellä kaunistavat luontoa ja samalla monet tarjoovat ihmisille lahjojansa vaatimatta häneltä sen enempää työtä ja vaivaa, kuin että hän tulee niitä ottamaan. Esitämme tässä muutamia kuuman ilmanalan kasveja, jotka joko tarjoavat tällä tavalla tuotteitansa ihmisille tahi ovat muuten huomiota herättäviä.
Meilläkin tavataan yleisesti huonekasviemme joukossa fiikuksia. Nämä ovat etelämaisia kasveja, ja niitä on monen monta eri laiia. Ne kasvavat joko puiksi tahi pensaiksi ja ovat omituisia siitä, että niiden kukat eivät ole näkyvissä, vaan onton, mehevän päärunan kaltaisen "fiikunan" sisäpuolella, jonne paksummasta päästä vie ainoastaan ahdas aukko. Fiikunapuita kasvaa Intiassa, mutta myöskin Vähässä Aasiassa ja Euroopankin puolella Välimeren rantamaissa. Kypsyneinä ovat fiikunat syötäviksi kelpaavia sekä ihmisille että eläimille, ja puut antavat näitä hedelmiänsä kahdesti, jopa väliin kolmestikin vuoden kuluessa. Viiniköynnöksen ja öljypuun ohessa olivat ne myöskin muinoisen Palestinan rikkautena, ja raamatussa mainitaan usein fiikunapuuta. Ne ntavat hyvin tärkeitä ruoka-aineita, mutta myöskin kauppatavaraa; meilläkään eivät fiikunat ole harvinaisia ulkomaisten hedelmien joukossa. Muutamista fiikuslajeista saadaan myös kummilakkaa, jota valmistetaan siitä maitomaisesta, tahmeasta nesteestä, mitä runkoon pistetystä reijästä vuotaa.
Omituisimpia puita ovat fiikusten joukkoon kuuluvat baniaanipuut, joita kasvaa Intiassa. Runkoja näkee useita, mutta latva saattaa olla sama. Ja tämmöinen yhteinen latva saattaa olla sangen laaja, kokonainen lehto eli metsä. Kerrotaan Aleksanteri Suuren intialaisella sotaretkellään kerran koko joukkoineen majailleen semmoisen puun suojassa, ja sanotaan nytkin Intiassa olevan semmoisia metsiä, joissa on yli 3 tuhatta pienempää tahi suurempaa runkoa, mutta sama laaja latva, jonka alle voi viisikin ratsumiesrykmenttiä asettua suojaan. Tämmöisten metsien muodostuminen käy sillä tavalla, että kasvaneen puun latvasta alkaa alaspäin pistäytyä n. s. ilmajuuria, jotka maahan ulotuttuaan juurtuvat siihen ja kehittyvät rungoksi. Latva laajenee tietysti samassa määrässä kuin runkoja lisääntyy, ja laajentunut latva lähettää taas uusia ilmajuuria. Usein käy myös sillä tavalla, että linnut kuljettavat tämän puun siemeniä palmupuiden latvoihin ja ne itävät ja alkavat kasvaa siellä. Vähitellen lähettää tämmöinen loisena elänyt kasvi oman ilmajuurensa maahan ja sitten toisia jäljessä. Nämä vahvistuvat rungoiksi, joiden syleilystä palmu viimein kuihtuu ja kuolee. Ja näin on kutsumatta tullut vieras anastanut palmun paikan ja levittää siinä edelleen alaansa, laajentaen latvaansa sen mukaan kuin uudet ilmajuuret ulottuvat maahan, juurtuvat ja vahvistuvat rungoiksi. - Erästä lajia tämmöistä fiikusta pidetään Intiassa pyhänä puuna sen tähden, että muka Buddha maailmassa ollessaan opetti ihmisiä näiden varjossa.
Intiassa ja Kanarian saarilla kasvaa eräs joukko puita, joita nimitetään traseenoiksi. Ne ovat palmujen kaltaisia, usein hyvin korkeita puita, joilla on tukeva runko, mikä sitten latvassa saattaa jakautua hyvinkin moniksi haaroiksi ja oksiksi. Lehdet, joita on oksien kärjissä, ovat pitkiä, tasasoukkia taikka suippopäisiä. Oksien kärjissä ovat myöskin kukat, jotka tavallisesti ovat rypäleissä ja valkeita väriltään. Erästä lajia näistä sanotaan traakkipuuksi. Nämä voivat kasvaa hyvin korkeiksi ja paksuiksi. Kanarian saariryhmään kuuluvalla Teneriffan saarella on tavattu oikea jättiläispuu tätä lajia. Jo v. 1402, kun eurooppalaisia ensi kerran kävi tällä saarella, oli tämän runko yhtä paksu kuin v. 1868, jolloin hirmumyrsky sen kaasi. Se oli nimittäin 22 metriä pitkä ja tyvestä lähes 13 ½ metriä paksu ympärimitaten. Sen ikä laskettiin vähintäin 5 tuhanneksi vuodeksi. Traakkipuusta saadaan eräänlaatuista pilikamaista ainetta, jota nimitetään traakkivereksi. Puun runkoon leikataan haaroja, joista pihkaneste tihkuu ulos. Valmistettuna saa lian siitä väriainetta: mutta sitä on myöskin vanhoista ajoista saakka käytetty lääkkeenä. Traakkiverestä kallisarvoisena lääkkeenä puhuvat jo muutamat vanhan ajan viisaat, ja valmistettiin sitä luultavasti silloin jonkun Sokotran saarella kasvavan traseenalajin nesteestä. Nykyään tällä nimellä mainittavaa väriainetta, jota käytetään yleensä hammaspulverin ja muiden kaunistusaineiden värjäämiseen ja hyvänhajuiseksi tekemiseen, saadaan, paitsi edellä mainitulla tavalla traakkipuusta, myöskin n. s. traakkipalmusta, joka kasvaa Sumatran ja Borneon saarilla ja jonka varsia ovat meillä hyvin tunnetut rottingit. Nämä tasapaksut, joskus 200 metrin pituiset rungot ovat kietoutuneina muiden kasvien ympärille, ja hedelmästä valmistetaan tuota mainittua väriainetta. - Muutamia traseenalajeja käytetään meillä huonekasveina.
Erittäin huomattavan ryhmän kasvikunnassa muodostavat palmut, joita kasvaa kuumassa ilmanalassa ja joita tunnetaan enemmän kuin tuhat eri lajia. Kuuluisa kasvitutkija Linné nimittää niitä kasvimaailman ruhtinaiksi, koska ne yleensä ovat komeita, majesteetillisia nähdä ja ovat ihmisille suuresti hyödyllisiä. Toiset niistä kasvavat pensaina, jotkut pitkinä, toisissa puita kiertelevinä, niinkuin edellä mainittu rottinkipalmu, mutta useimmilla on tukeva runko, jossa nähdään kuihtuneiden ja poispudonneiden lehtien tyvinikamia tahi niiden arpia; lehtiä on kulloinkin ainoastaan latvassa, ja sen mukaan kuin runko kasvaa korkeammaksi, kuihtuvat alimmaiset lehdet. Muutamat palmulajit kasvavat niin korkeiksi, että niiden latvat muodostavat erityisen metsän muun tavallisen metsän yläpuolella, joten kaukaa katsellen metsä näyttää kaksikerroksiselta.
Syykas- eli käpypalmpu on intialainen kasvi. Se on omituinen siitä, että sen runkoa ympäröi kerros kantoja eli nastoja, jotka tekevät rungon kävyn näköiseksi. Lehdet ovat kokonaisuudessaan pitkiä ja kaitaisia, mutta oikeastaan siinä on suuri joukko kaitaisia pikkulehtiä, vähän leveämpiä ja litteämpiä kuin lihavan männyn neulaset, liittyneinä yhteiseen pitkään lehtiruotiin. Tämän palmun rungon ytimestä valmistetaan ravinnoksi kelpaavia, runsaasti tärkkelystä sisältäviä ryyniä tahi jauhoja, jotka eivät kuitenkaan ole yhtä hyviä, vaikka muuten samantapaisia, kuin saako palmun ytimestä saatavat saakoryynit. Syykas- eli käpypalmu on meillä kasvihuoneissa ja usein asuinhuoneissakin hoidettu kasvi, vaikka ei se ainakaan jäkimmäisissä kasva niin rehevästi, että sille ennättäisi tuota käpymäistä runkoa pilkaltakaan muodostua.
Hyödyllisimpien palmujen joukkoon kuuluu kookospalmu. joka on alkuaan kotoisin Intiasta ja Ison Valtameren saarilta, mutta on viljelyksen avulla niin levinnyt, että sitä kasvaa melkein kaikkialla päiväntasaajan seuduilla ympäri maapalloa. Se on pitkärunkoinen, noin 18-24 metriä korkea, komealatvainen puu ja kasvaa yleensä merien, jokien ja järvien rannoilla, missä on tarpeeksi kosteutta. Hedelmät, joita täysikasvuisissa puissa voi olla 200-300, ovat ihan sen pään kokoisia, kovakuorisia. Kuorta käytetään sorvaustöiliin. Sisusta on pehmeätä, löyhää, rihmamaista, karkeasyistä ainetta. Kookospalmu on seutunsa asukaille todellakin oikea sampo, sillä se hyödyttää heitä monen monituisella tavalla. Sen juuresta valmistavat monet kansat
pureksittavaksensa "mällejä," jotka vaikuttavat huumaavaisesti kuin tupakka meikäläisten suussa. Sen sitkeistä rungon sisäsyistä kudotaan koreja ja koppia. Rungon kovempaa pintapuolta käytetään rakennusaineina. Rungon alin osa on sangen tiivistä ja kovaa, ja kiillotettuna on se hyvin kaunista huonekaluina. Lehtivarsien syistä kudotaan karkeata kangasta, ja äskenpuhjenneista lehdistä valmistetaan erittäin herkullista palmukaalia. Täysikasvuiset lehdet kelpaavat kattoaineiksi ja moneen muuhun tarkoitukseen. Hedelmän kovan kuoren alla olevista karkeista syistä tehdään köysiä, harjoja j. n. e. Polttamalla saadaan lehdistä runsaasti potaskaa. Kukissa ja rungon monissa osissa on runsaasti sokeria sisältäviä mehua, josta käyttämällä saadaan oivallista palmuviiniä ja tislaamalla aarakkia. Keittäen voi tästä nesteestä saada myös karkeata sokeria. Tuon kovakuorisen hedelmän keskustana on kova, koloinen ja kookas siemen. Koloissa on maitomaista nestettä, n. s. kookosmaitoa. Se on semmoisenaan mainiota virkistävää ja ravitsevaista juomaa. Myöhemmin se jäähmettyy kiinteäksi, mantelinmakuiseksi aineeksi ja on silloin arvokasta ravintoa. Tästä valmistetaan myöskin n. s. palmuöljyä. Monta tuollaista puuta ei perhe tarvitse elääkseen, ja senpä tähden onkin kookospalmu hyvin suosittu ja viljelyksellä laajalti levitetty kasvi.
Kyläk. Kuval. A.
25.4.14
Wladimir Mainov: Mordvakansan lakitapoja. (Suomennos) (väriä ja värjäystä sivuavat kohdat)
Suomi 3, 1890
Helsingissä, Suomen Kirjallisuuden Seuran kirjapainossa, 1888.
s.88 (sanonta)
Moksassa emme olleet tilaisuudessa mitään tämäntapaista huomaamaan, ja omaisuus täällä jaetaan aina tasaisiin osuuksiin, sillä kuulijaisuutta kieltävä poika olisi ulosjaotettu tai mennyt uhkalähtöön jo paljoa aikasemmin. Osuuksien epätasaisuus voi tosin sekä Ersassa että Moksassa syntyä toisestakin syystä, nimittäin siitä, että isä erottaa itselleen myöskin osuuden vanhuutensa varaksi ("siräti sakalti") tai harmaan partansa varalle, niinkuin sanoo moksalainen, ja siirtää tämän osuuden sille pojistaan, jonka luo hän muuttaa asumaan; tämä osa jää, vanhuksen vielä eläessä, ainoastaan hallittavaksi häntä turvaavalle pojalle, ja joutuu kokonaan tämän omistukseen vasta isän kuoltua, joka voi kumminkin, jos poika käyttäytyy häntä vastaan huonosti, siirtää osansa jollekulle muullekin pojistaan, taikka jakaa sen tasan kaikkien poikiensa kesken; tämmöinen tapa tietysti pakottaa kelvottomia poikia kunniotuksella kohtelemaan vanhentuneita vanhempiaan.
S.112-113 (vaatetus)
Ristiäisissä ei anneta kellekkään mitään, paitsi, venäläisten esimerkin mukaan, nenäliina papille ja roponen kirkonpalvelijalle, eikä kätilöin tässä enää ole minään. Ensimmäiset housut pojalle on isoisä velvollinen antamaan, vaan tytölle lahjoittaa mummo paidan heti hänen ensimmäisen aikansa jälkeen; tällöin ei housut eikä paita saa missään tapauksessa olla värillisiä, niinkuin vakuutetaan Moksassa, jotta kaikki näkisivät, että he ovat jo saavuttaneet soveliaan ijän, koska toisella on housut tahraamattomat, toisella paita kantaa neitsyyden merkkiä.
s. 162-165 (mestareista, myös värjäreistä)
Jo vanhastaan on tavaksi tullut, että maata viljelevä mordvalainen ei mielellään rupea muutamiin ammattitöihin ja, päinvastoin, pitkin koko Venäjää ovat taas kuuluisat muutamat kylät erityisistä teollisuuden tuotteistaan; niin esimerkiksi Pensan maakunnan Insarin piirikunnassa kiistellään etevämmyydestä Kimrjatsin ja Buturlinofkan suutarien välillä; Saranskissa kulkee Vorontsovin villanpuhdistajan koillinen raja yhtyen tässä Kasanilaisiin; Ardatovaan asti Nishegorodin ja Simbirskin maakuntaa tulevat Birjutschin ja Oskolskin värjärit. Tämä seikka ei siltä suinkaan osota, että itse Mordvassa kerrassaan puuttuisi yllämainittua teollisuutta, sillä siellä harjoitetaan kaikkia yllämainittuja, vaikka taito niissä ei ole niin kuuluisa, kuin kaikkien noitten isovenäläisten kaupittelijain; huomattava on kumminkin, että Mordvassa jo aletaan tuntea rasitusta siitä rahan menekistä, joka kulkee ikäänkuin vieraihin taskuihin, ja siksi olemmekin usein kuulleet valituksia siitä, että venäläiset mestarit eivät mielellään ota palvelukseensa mordvalaisia lapsia, jotka enimmäkseen sen kautta, etteivät tunne venäjänkieltä, ovat mestareilleen vastukseksi. Ersassa ei tämä ole niin huomattava, vaan Moksassa olemme huomanneet kokeita viekotella venäläisiä mestareita taloon pitemmäksi ajaksi, jolloin niitten väkisinkin täytyy ottaa avukseen ja oppiinsa mordvalaisia lapsia. Me keskustelimme muutamien tämmöisten venäläisten mestarien kanssa ja heidän käsittääkseen ovat mordvalaiset lapset hyvin älykkäitä, aikaa vaan tahtoo paljon mennä venäjänkielen oppimiseen; jollei tämä olisi esteenä, otettaisiin niitä mielellään työhön, sillä ne ovat harvoin vallattomia, aina "kokevat palvella isäntää", ja vihdoin "rakastavat puhdasta työtä". Työt kuljeksiville mestareille samoin kuin omillekin maalaisille annetaan urakalla mitä erilaisimmilla ehdoilla, joille ei tapa ole mitään kaavaa luonut ja joissa kaikki riippuu, sopimuksen laadusta. Yksi ainoa merkillisyys pistää jokaisen puustakatsojan silmiin, nimittäin se, että kaikki tilaukset villanpuhdistajille, räätäleille, kankureille, värjäreille, nahkureille ja suutareille tekee talon vanhin vaimo-ihminen, jonka tehtävänä onkin tarkastaa työn menoa ja yleensä pitää tästä asiasta huolta; tietysti tämä kaikki käypi isännältä edeltäpäin saatujen neuvojen tai suostumuksen mukaan, hän ei kumminkaan sekaannu keskusteluihin ja sopimukseen, eikä sittemmin asian erikoiskohtiin; toinen on asia, kuin alaikäinen annetaan oppiin, koska tässä, niinkuin muuallakin, isännän on taisteleminen ankara taistelu muorien ja tätien kanssa, jotka joko eivät tunnusta oppia hyödylliseksi taikka väittävät lapsen liian heikoksi opetusta kestämään. Useimmiten tavataan näitä töitä annettaessa molemmilla heimoilla semmoinen tapa, että naulasta annetaan palkaksi kahdeksas-osa ja puudasta kahdeksaan naulaan asti; hyvin harvoin maksu suoritetaan rahassa, eivätkä villanpuhdistajat pidäkkään sitä tarpeellisena, sillä heillä on aina maksulaskun varalta vaaka kainalossaan, ja siinä ei kahdeksas-osa etäälle neljänneksestä mene. Entisiin aikoihin oli villojen puhdistamisesta tapana maksaa kourasun (povama) mukaan siten, että mestari sai läjään pannuista villoista kouraista yhdellä tai kahdella kädellä työn vaikeuden ja suuruuden mukaan, taikka sitten ottaa useamman kerran läjästä niin paljon kuin pivolliseen menee; nyt kuin puitakin on ruvettu muutamin paikoin puudoittain myymään, on kourasun sijaan tullut vaaka käytäntöön,joka ei ole kuljeskeleville mestareille ollenkaan mieleen. Kankurit saavat myöskin maksunsa luonnossa ja tämä maksu luetaan arssinalta kahdesta tuumasta kortteliin asti työn vaikeuteen, kudoksen ja mallin laatuun katsoen; muut saavat maksun kappaleesta tai parista ja enimmäkseen rahassa, jotka kuitenkin mieluummin vaihdetaan leipään, voihin, weteen j. n. e. Oppiin lähettäminen tapahtuu Ersassa hiukan toisin kuin Moksassa; edellisessä ei ole vielä nähtävästi ehditty huomaamaan sitä epäedullisuutta, minkä kulkumestarit tuottavat, ja siksi annetaan lapsia sillä ehdolla, että heitä ensimmäisenä vuotena syötetään ja vaatetetaan, ja toisena vuotena vaaditaan jo jotakin maksua, jota vastoin Moksassa annetaan poika kolmeksi vuodeksi syöttämisen ja vaatettamisen ehdolla, eikä vaadita mitään maksua; koska Moksassa kuljeksii enemmän etelänpuoleisia mestareita, niin siellä tavataankin enemmän mordvalaisia oppilaita; samoilla ehdoilla tapasimme kaupungeissa mordvalaisia oppipoikia, ja kerran näimme erään nuorukaisen, joka oli annettu maalarin-oppiinkin eräälle kuljeskelevalle maalarille. Mordvassa hyvin kaivataan teollisuus- ja maanviljelyskouluja ja usein saimme kuulla, että mielellään olisi lapsia niihin annettu, erittäin jälkimmäisiin; pääseminen oppilaiksi valtion meijerilaitoksiin on niin vaikea, että huonosti venättä taitava mordvalainen poika ei tarvitse ajatellakkaan sinne pääsevänsä. Suurimmaksi osaksi ammattityöt tehdään työnantajan talossa; siksi ei olekkaan tarvis varoa, ettei ainekset tulisi oikeen takasinannetuiksi ; jollei sitä vastoin töitä tehdä antajan talossa, niin ainekset pannaan pussiin tai niinimattoon, joitten päälle piirretään isännän merkki. Petokset ja aineksien hukkaamiset ovat jotenkin harvinaisia, mutta kaikissa tapauksissa mestari vastaa asiasta rahassa, jotka häneltä ottaa kunnallisoikeus, jolloin riittää kaksi vierasta miestä asian ratkaisemiseksi pyytäjän eduksi. Koska mestarit käyvät vuosi vuodelta samassa paikassa, mihin ovat kerran mieltyneet, niin ei heille tietysti olisi edullistakaan pilata mainettaan petoksella ja epärehellisyydellä, siksipä semmoiset velkomisjutut ovat kunnallisoikeuksissa ani harvinaiset, jopa muutamin paikoin meille ihmetellen vastattiin: "kuinka se olisi mahdollista? semmoista ei tapahdu!"
s. 178. (palkka, pukeutuminen, sanonta)
Tavanomainen rengin palkka on hyvin epätasanen, koska kaikki riippuu tässä työmiehen kunnollisuuden tai kunnottomuuden maineesta; niinpä tapasimme työmiehiä, joilla oli palkkaa 50, 60, jopa 90:kin ruplaa kesässä, mutta viimeistä palkkaa tavataan kumminkin harvoin ja keskimääräisenä on pidettävä 60 rupi.; paitsi rahapalkkaansa saa renki 5 paria lapikkaita ja valkosen mekon - "ponar", jota mordvalainen käyttää työssään ja rukoillessaan, niinkuin heistä laulussakin lauletaan: "af kileit virs sukun't - Metŝorat Pazindi oznit" (Ei huoju koivut metsässä - mordvalaiset Jumalaansa rukoilevat).
Helsingissä, Suomen Kirjallisuuden Seuran kirjapainossa, 1888.
s.88 (sanonta)
Moksassa emme olleet tilaisuudessa mitään tämäntapaista huomaamaan, ja omaisuus täällä jaetaan aina tasaisiin osuuksiin, sillä kuulijaisuutta kieltävä poika olisi ulosjaotettu tai mennyt uhkalähtöön jo paljoa aikasemmin. Osuuksien epätasaisuus voi tosin sekä Ersassa että Moksassa syntyä toisestakin syystä, nimittäin siitä, että isä erottaa itselleen myöskin osuuden vanhuutensa varaksi ("siräti sakalti") tai harmaan partansa varalle, niinkuin sanoo moksalainen, ja siirtää tämän osuuden sille pojistaan, jonka luo hän muuttaa asumaan; tämä osa jää, vanhuksen vielä eläessä, ainoastaan hallittavaksi häntä turvaavalle pojalle, ja joutuu kokonaan tämän omistukseen vasta isän kuoltua, joka voi kumminkin, jos poika käyttäytyy häntä vastaan huonosti, siirtää osansa jollekulle muullekin pojistaan, taikka jakaa sen tasan kaikkien poikiensa kesken; tämmöinen tapa tietysti pakottaa kelvottomia poikia kunniotuksella kohtelemaan vanhentuneita vanhempiaan.
S.112-113 (vaatetus)
Ristiäisissä ei anneta kellekkään mitään, paitsi, venäläisten esimerkin mukaan, nenäliina papille ja roponen kirkonpalvelijalle, eikä kätilöin tässä enää ole minään. Ensimmäiset housut pojalle on isoisä velvollinen antamaan, vaan tytölle lahjoittaa mummo paidan heti hänen ensimmäisen aikansa jälkeen; tällöin ei housut eikä paita saa missään tapauksessa olla värillisiä, niinkuin vakuutetaan Moksassa, jotta kaikki näkisivät, että he ovat jo saavuttaneet soveliaan ijän, koska toisella on housut tahraamattomat, toisella paita kantaa neitsyyden merkkiä.
s. 162-165 (mestareista, myös värjäreistä)
Jo vanhastaan on tavaksi tullut, että maata viljelevä mordvalainen ei mielellään rupea muutamiin ammattitöihin ja, päinvastoin, pitkin koko Venäjää ovat taas kuuluisat muutamat kylät erityisistä teollisuuden tuotteistaan; niin esimerkiksi Pensan maakunnan Insarin piirikunnassa kiistellään etevämmyydestä Kimrjatsin ja Buturlinofkan suutarien välillä; Saranskissa kulkee Vorontsovin villanpuhdistajan koillinen raja yhtyen tässä Kasanilaisiin; Ardatovaan asti Nishegorodin ja Simbirskin maakuntaa tulevat Birjutschin ja Oskolskin värjärit. Tämä seikka ei siltä suinkaan osota, että itse Mordvassa kerrassaan puuttuisi yllämainittua teollisuutta, sillä siellä harjoitetaan kaikkia yllämainittuja, vaikka taito niissä ei ole niin kuuluisa, kuin kaikkien noitten isovenäläisten kaupittelijain; huomattava on kumminkin, että Mordvassa jo aletaan tuntea rasitusta siitä rahan menekistä, joka kulkee ikäänkuin vieraihin taskuihin, ja siksi olemmekin usein kuulleet valituksia siitä, että venäläiset mestarit eivät mielellään ota palvelukseensa mordvalaisia lapsia, jotka enimmäkseen sen kautta, etteivät tunne venäjänkieltä, ovat mestareilleen vastukseksi. Ersassa ei tämä ole niin huomattava, vaan Moksassa olemme huomanneet kokeita viekotella venäläisiä mestareita taloon pitemmäksi ajaksi, jolloin niitten väkisinkin täytyy ottaa avukseen ja oppiinsa mordvalaisia lapsia. Me keskustelimme muutamien tämmöisten venäläisten mestarien kanssa ja heidän käsittääkseen ovat mordvalaiset lapset hyvin älykkäitä, aikaa vaan tahtoo paljon mennä venäjänkielen oppimiseen; jollei tämä olisi esteenä, otettaisiin niitä mielellään työhön, sillä ne ovat harvoin vallattomia, aina "kokevat palvella isäntää", ja vihdoin "rakastavat puhdasta työtä". Työt kuljeksiville mestareille samoin kuin omillekin maalaisille annetaan urakalla mitä erilaisimmilla ehdoilla, joille ei tapa ole mitään kaavaa luonut ja joissa kaikki riippuu, sopimuksen laadusta. Yksi ainoa merkillisyys pistää jokaisen puustakatsojan silmiin, nimittäin se, että kaikki tilaukset villanpuhdistajille, räätäleille, kankureille, värjäreille, nahkureille ja suutareille tekee talon vanhin vaimo-ihminen, jonka tehtävänä onkin tarkastaa työn menoa ja yleensä pitää tästä asiasta huolta; tietysti tämä kaikki käypi isännältä edeltäpäin saatujen neuvojen tai suostumuksen mukaan, hän ei kumminkaan sekaannu keskusteluihin ja sopimukseen, eikä sittemmin asian erikoiskohtiin; toinen on asia, kuin alaikäinen annetaan oppiin, koska tässä, niinkuin muuallakin, isännän on taisteleminen ankara taistelu muorien ja tätien kanssa, jotka joko eivät tunnusta oppia hyödylliseksi taikka väittävät lapsen liian heikoksi opetusta kestämään. Useimmiten tavataan näitä töitä annettaessa molemmilla heimoilla semmoinen tapa, että naulasta annetaan palkaksi kahdeksas-osa ja puudasta kahdeksaan naulaan asti; hyvin harvoin maksu suoritetaan rahassa, eivätkä villanpuhdistajat pidäkkään sitä tarpeellisena, sillä heillä on aina maksulaskun varalta vaaka kainalossaan, ja siinä ei kahdeksas-osa etäälle neljänneksestä mene. Entisiin aikoihin oli villojen puhdistamisesta tapana maksaa kourasun (povama) mukaan siten, että mestari sai läjään pannuista villoista kouraista yhdellä tai kahdella kädellä työn vaikeuden ja suuruuden mukaan, taikka sitten ottaa useamman kerran läjästä niin paljon kuin pivolliseen menee; nyt kuin puitakin on ruvettu muutamin paikoin puudoittain myymään, on kourasun sijaan tullut vaaka käytäntöön,joka ei ole kuljeskeleville mestareille ollenkaan mieleen. Kankurit saavat myöskin maksunsa luonnossa ja tämä maksu luetaan arssinalta kahdesta tuumasta kortteliin asti työn vaikeuteen, kudoksen ja mallin laatuun katsoen; muut saavat maksun kappaleesta tai parista ja enimmäkseen rahassa, jotka kuitenkin mieluummin vaihdetaan leipään, voihin, weteen j. n. e. Oppiin lähettäminen tapahtuu Ersassa hiukan toisin kuin Moksassa; edellisessä ei ole vielä nähtävästi ehditty huomaamaan sitä epäedullisuutta, minkä kulkumestarit tuottavat, ja siksi annetaan lapsia sillä ehdolla, että heitä ensimmäisenä vuotena syötetään ja vaatetetaan, ja toisena vuotena vaaditaan jo jotakin maksua, jota vastoin Moksassa annetaan poika kolmeksi vuodeksi syöttämisen ja vaatettamisen ehdolla, eikä vaadita mitään maksua; koska Moksassa kuljeksii enemmän etelänpuoleisia mestareita, niin siellä tavataankin enemmän mordvalaisia oppilaita; samoilla ehdoilla tapasimme kaupungeissa mordvalaisia oppipoikia, ja kerran näimme erään nuorukaisen, joka oli annettu maalarin-oppiinkin eräälle kuljeskelevalle maalarille. Mordvassa hyvin kaivataan teollisuus- ja maanviljelyskouluja ja usein saimme kuulla, että mielellään olisi lapsia niihin annettu, erittäin jälkimmäisiin; pääseminen oppilaiksi valtion meijerilaitoksiin on niin vaikea, että huonosti venättä taitava mordvalainen poika ei tarvitse ajatellakkaan sinne pääsevänsä. Suurimmaksi osaksi ammattityöt tehdään työnantajan talossa; siksi ei olekkaan tarvis varoa, ettei ainekset tulisi oikeen takasinannetuiksi ; jollei sitä vastoin töitä tehdä antajan talossa, niin ainekset pannaan pussiin tai niinimattoon, joitten päälle piirretään isännän merkki. Petokset ja aineksien hukkaamiset ovat jotenkin harvinaisia, mutta kaikissa tapauksissa mestari vastaa asiasta rahassa, jotka häneltä ottaa kunnallisoikeus, jolloin riittää kaksi vierasta miestä asian ratkaisemiseksi pyytäjän eduksi. Koska mestarit käyvät vuosi vuodelta samassa paikassa, mihin ovat kerran mieltyneet, niin ei heille tietysti olisi edullistakaan pilata mainettaan petoksella ja epärehellisyydellä, siksipä semmoiset velkomisjutut ovat kunnallisoikeuksissa ani harvinaiset, jopa muutamin paikoin meille ihmetellen vastattiin: "kuinka se olisi mahdollista? semmoista ei tapahdu!"
s. 178. (palkka, pukeutuminen, sanonta)
Tavanomainen rengin palkka on hyvin epätasanen, koska kaikki riippuu tässä työmiehen kunnollisuuden tai kunnottomuuden maineesta; niinpä tapasimme työmiehiä, joilla oli palkkaa 50, 60, jopa 90:kin ruplaa kesässä, mutta viimeistä palkkaa tavataan kumminkin harvoin ja keskimääräisenä on pidettävä 60 rupi.; paitsi rahapalkkaansa saa renki 5 paria lapikkaita ja valkosen mekon - "ponar", jota mordvalainen käyttää työssään ja rukoillessaan, niinkuin heistä laulussakin lauletaan: "af kileit virs sukun't - Metŝorat Pazindi oznit" (Ei huoju koivut metsässä - mordvalaiset Jumalaansa rukoilevat).
24.4.14
Popular Exposition of Some Scientific Experiments. Part III. - Things that are invisble. - The nature of sight. - Visual Deceptions.
Harper's new monthly magazine 5, 1877
When a beam of light is decomposed by a prism, and a spectrum is formed, the superbly colored image arising - red at the less, violet at the more, refrangible extremity - offers to the curious observes, as Sir David Bewster, who had spent many years in its examination, once said, a world within itself. It is a visible manifestation of the great forces of Nature.
But the visible manifestation which we thus behold is only the portion of what we might witness were our eyes more perfect. Herchel proved that there are invisible radiations below the red capable of affecting us with a sensation of warmth; Scheele and Ritter, that there are other invisible ratiations beyond the violet that can accomplish chemical decompositions.
To this visible world we have, therefore, to add one that is unseen.
But these observers, satisfied with having indicated the existence of forces in those regions, left to their successors the labor of a more thorough investigation - an investigation that has produced many interesting results.
It would require far more space than I have now at my disposal to do justice to these investigations. They have been conducted by some of the ablest philosophers, and many of them are specimens of consumate experimental skill. What I propose to do now is only to describe researchers I have personally made on this subject, and to offer reflections on their bearing.
In the summer of 1842 I made many attempts to photograph the Fraunhofer fixed lines of the spectrum, and at length obtained exceedingly beautiful impressions of them. These were on daguerreotype silver plates - the operation in use at that time. In the following spring (May, 1843) I published in the Philosophical Magazine a description of the method of conducting the experiment and the results it furnished. The following is an abstract of it:
"When a beam of the sun's light, directed horizontally by a heliostat, is admitted into a dark room, and passing through a slit with parallel sides, is received on the surface of a flint-glass prism, which refracts it at the angle of minimum deviation, and, after its passage through the prism, is converged to a focal image on a white screen by the action of an achromatic lens, the resulting spectrum is given in great purity, and Fraunhofer's lines are very distinct. If a photographic surface be set in the place of the white screen, it will exhibit the representation of multitudes of dark lines.
"I can not avoid calling attention to the remarkable circumstance, which has often presented itself to me, of a great change in the relative visibility of Fraunhofer's lines when seen at different times. Sometimes the strong lines in the red ray are so feeble that the eye can barely discover them, and then again they come out as dark as though marked in India ink on the paper. During these changes the other lines may or may not undergo corresponding variations. The same remark applies to the yellow and blue rays. It has seemed to me that the lines in the red are more visible as the sun approaches the horizon, and those at the more refrangible end of the spectrum are plainer in the middle of the day."
I subsequently substantiated this remark, and satisfied myself that many of the lines in the red are due to absorption by the earth's atmosphere, and therefore more sidtinct with a rising or setting sub. Those in the more refrangible regions, the indigo, the blue, and the violet, are due to absorption by the atmosphere of the sun.
The apparatus I have used may be thus more particularly described:
"A sunbeam, passing horizontally from a heliostat mirror into a dark room, was received on a screen with a slit in its centre, the slit being formed by a pair of parallel knife edges, one of which was movable by a micrometer screw, the instrument being, in fact, the common one used for showing diffracted fringes. The screw was adjusted so as to give an aperture 1/52 (?) inch wide, and the light passing through fell upon an equiantigular flint-glass prism placed at a distance of eleven feet. Immediately on the posterior face of the prism the ray was received on an achromatic lens, the object-glass of a telescope, and brought to a focus at the distance of six feet inches, at which an arrangement was adjusted for exposing white paper screens, on which the greater fixed lines might be seen, or sensitive plates substituted for the screens, occupying precisely the same position. The lines on the screens could, therefore, be compared with those on the sensitive surfaces as to position and magnitude with considerable accuracy.
"In order to identify these lines I have made use of the map of the spectrum published by Professor Powell in the Report of the British Association for 1839. With the apparatus as above described they are exceedingly distinct; no difficulty arises in the identification of the more prominent ones. The spectrum with which I have worked occupied upon the screen a space of nearly four inches and a quarter in length from the red to the violet, or, more correctly speaking, from the ray marked in that map A to the one marked k. In stating, however, that no difficulty arises in identifying these lines, I ought to add that I am referring to that particular map. In the figure annexed to Sir John Herschel's "Treatise on Light," in the Encyclopædia Metropolitana, the rays marked G seem to differ from that in the report. But Professor Powel's map being drawn from his personal observations, with reference to the very difficulties, and as it agrees with my own observations and measures, I have employed it, and therefore take the letters he gives.
"It will be understood that the whole spectrum and all its lines can not be obtained at one impression. The difficulty is that the different regions of the spectrum act with different power in producing the proper effect. Thus, if on common yellow iodide of silver the attempt were made to procure all the lines at one trial, it would be found that the blue region would have passed to a state of high solarization, and that all its fine lines were extinguished by being overdone long before any well-marked action could be traced in the less refrangible extremity. It is necessary, therefore, to examine the different reguins in succession, exposing the sensitive surface to each for a suitable length of time."
"The general result of these various photographs may be thus stated: Below the red rays, and in a reguin altogether invisible, are three very large lines, these I designated α, β, γ, they are obtained more perfectly in the morning and evening light, less perfectly in the middle of the day, and hence I inferred that they are probably due to the absorptive action of the earth's atmosphere. Fraunhofer's lines A and B were also depicted, but I did not obtain D, E, F. The line G and its companions were very strongly impressed. But by far the most striking in the whole photograph are those marked H. Then passing beyond the violet and out in the visible limits of the spectrum, four very striking groups made their appearence. To the first line of each of these, in continuation of Fraunhofer's nomenclature, I gave the designations M, N, O, P. In l There are three lines, in M eight, in N three, in O four, and in P five.
"Besides these larger groups, the photographs were crossed by hundreds of minuter lines, so that it was impossible to count them. If nearly six hundred have been counted between A and H, I should think there must be quite as many between H and P. In speaking of these lines as though they were strong individual ones, the statement is to be taken with some limitation. It is quite likely that each of these bolder lines is made up of a great number that are excessively narrow and close together.
"If the absorptive action of the sun's atmosphere be the cause of this phenomenon, that action must take place much more powerfully on the more refrangible and extra-spectral region. THe lines exhibited there are bold and strongly developed."
Scarcely was the paper from which the foregoing extracts are made published in the Philosophical Magazine, when I learned that in France M. E. Becquerel had already photographed the more refrangible lines, and published statements to that effect. But he had not observed those in the less refrangible regions, designated by me α, β, γ.
In fact, the process I was using was one I had recently discovered: it consisted in permitting the daylight to fall along with the sun rays on the photographic surface. The daylight and the sunlight antagonized each other, and these hitherto undiscovered lines made their appearance as positive photographs. The peculiarities of this singular and interesting process I will describe hereafter in one of these papers.
In 1846 MM. Foucault and Fizeau, having repeated the experiment thus originally made by me, presented a communication to the French Academy of Sicences. They had observed the antagonizing action above described, and had seen the ultra-spectrum heat lines, α, β, γ. They had taken the precaution to deposit with the Academy a sealed envelope containing an account of their discovery, not knowing that it had been made and published long previously in America.
Hereupon, M. E. Becquerel communicated to the same Academy a criticism on their paper. In this he remarks: "M. Draper, in examining the image produced by the action of the spectrum on plates of iodized silver, announced before those gentlemen the existence of protecting rays antagonizing the action of the solar rays, and even acting negtaively on iodide of silver." He strengthened his views by adding some observations that had been made by Sir J. Herschel, who did not assent to the existence of this protecting action, but thought that the daguerreotype impressions could be explained on Newton's theory of the colors on thin plates.
Herschel had made some investigations on the distribution of heat in the spectrum, using paper blackened on one side and moistened with alcohol on the other. He obtained a series of spots or patches, commencing above the yellow and extending far below the red. Some writers on this subject have considered that these observations imply a discovery of the lines α, β, γ; they forget, however, that Herchel did not use a slit, but the direct image of the sun - an image which was more than a quarer of an inch in diameter, as I know from the specimens he sent me, and which are still in my possession. Under such circumstances it was physically impossible that these or any other of the fixed lines should be seen.
IN 1871 M. Lamanski announced that he had discovered these lines by tha aid of a thermo-multiplier. In his memoir he states that, with the exception of Foucault and Fizeau, no one had made reference to them. Hereupon I draw attention to the memoi I had published in 1843, containing a map or engraving of them.
As has been mentioned, I did not obtain at that time the lines D, E, F. I used that fact as an argument in belhalf of the theory of the physical independence of the luminous and chemical radiations. These were, however, subsequently photographed by my son, Henry Draper.
There are, therefore, many rays emitted by the sun and other shining bodies to which our eyes are entirely blind.
Two different reasons may be alleged for outr inability to perceive such rays: first, they may not be able to reach the retina, the media of the eye not transmitting them; second, the retina may be so constituted as to be unable to receive their impressions.
It has long been known that rays which come from sheet-iron heated by a lamp can not pass either through the cornea or through the crystalline lens. Even of those that are furnished by an Argand flame, used as a luminous source of heat, less than one-fifth pass through the cornea alone, and scarcely one-fiftieth when the crystalline lens is interposed. Cima showed that of the heat rays emitted a flame, less than one-tenth pass through the cornea, lens, and vitreous humor conjointly. Janssen, using a flame, compared the heat transparency of the separate media of the eye with that of water included between glass plates, showing that there is a perfect accordance between them if taken of equal thickness. From this it is to be concluded that invisible rays to a certain extent reach the retina. Franx, by carefully conducted experiments with a thermo-electric pile, came to the conclusion that a quantity of obscure rays detectable by the thermometer can reach the retina, which therefore must be so constituted as not to be able to perceive them.
This settles the question so fas as the less refrangible or ultra-red rays are concerned. We have then to determine how it is with those at the opposite or more refrangible end of the spectrum. Do these pass through the media of the eye, or are they arrested and never reach the retina?
I made a series of experiments on these rays, and found that they passed through the different media of the eye examined separately, and what is more tothe point, through them all collectively with but little loss. There was no difficulty in obtaining a dark stain on paper made sensitive with chloride of silver, and placed at the back of the eye of an ox, from which the selerotic and pigment had been suitably removed. In a general manner the media of the eye act like water on the transmissibility of these rays.
Admitting from these experiments that invisible as well as visible rays reach the retina, we may next consider the nature of the impression made upon it, and are thus brought directly to an investigation of the act of vision.
There are three hypotheses to be considered:
1. That rays falling on the retina or black pigment impart to those structures a rise of temperature. This may be termed the caloric hypothesis.
2. That raysfalling on the retina occasion a chemical change or metamorphosis in its structure, implyung the occurance of waste in it, and therefore the necessity of repair. This may be termed the chemical hypothesis.
3. That rays falling on the retina throw its parts into a vibratory movement, not necessarily attended by any metamorphosis of tissue, as waves of sound occasion consentaneous pulsations in the auditory apparatus of the ear. This may be termed the mechanical hypothesis.
First: Of the caloric hypothesis of vision.
Comparative anatomy offers certain facts which lend plausibility to this hypothesis. Some of the most remarkable of these relate to the construction of the eye in lower animals. The ocelli, which consist of dark-colored or black spots, or black cup-shaped membranes, containing within them the rudiment of an optic nerve, are te beginning of an organ of vision. There being no optical apparatus for the production of images, the luminous impression must be felt as heat. For this the dark pigment is well desigued. It is an old physical experiment to lay upon the snow on a sunshiny winter day pieces of differently colored cloth. They will melt their way to a greater depth in proportion as their tint is darker: the black, becoming the warmest, sinks deepest; the white, reflecting most of the heat, scarcely melts the snow at all. Now an animal destitute of any visual organ can only be affected by the impressions of light in a very doubtful manner; but if there be upon its exterior a black spot, not only is there a much higher sensitiveness because of the increased absorptive power for heat, but the sphere of consciousness is greatly extended, from the possibility of acquiring a knowledge of directions in space - a knowledge that becomes more and more exavt with the increasing number and symmertical arrangement of these ocelli.
Ifwe apply these principles to a more perfect form of eye, as that of man, we are led to a new interpretation of the function of some of its parts. The black pigment becomes the receiving surface for images of external things, and rays falling upon it, in their diversity of color, brightness, and shade, in the act of becoming extinguished, engender heat. As with the tip of the finger passing over an object we can discover, even in the dark, spaces that are warm and those that are cool, so the rods and cones of Jacob's membrane, acting as tactile organs, convey to the brain a knowledge of the momentary distribution of heat on the dark concave of the eye. The pigment has therefore a far more important office to discharge than that of merely extinguishing stray light and darkening the indise of the globe.
But this calirific hypothesis is not without great difficulties. Heat suffers conduction. If this black pigment officiated as a transformer of light rays into heat by producing extinction, there must unavoidably be a lateral spread from the boundaties of warm to cooler spaces, the edges of images must be nebulous and without sharpness of contour. Moreover, there is reason to believe that the visual apparatus can not take cognizance of heat merely as such. Calorific rays reach the black pigment and raise its temperature without the retina being affected.
Such considerations seem, therefore, to exclude the calorific hypothesis, and prepare us for a n examintaion of the chemical.
Second: Of the chemical hypothesis of vision.
Numerous discoveries made of late years in relation to the chemical actions of light put us in possession of many facts having a bearing on this hypothesesi. A majority of compound substances, both inorganic and organic, suffer chemical modifications when exposed to the access of light, and, what is very significant, these changes are occasioned by definite classes of rays. One substance finds it maximum of action in the violet region, another in the yellow, another in the red. The effect in every instance grades off toward the less and more refrangible spaces respectively.
In these actions of decomposition there is nothing like lateral spreading, nothing answering to conduction. No better proof oof this is necessary than the exquisite sharpness of photographic pictures - a sharpness only limit by the optical imperfections of the lens with which they are made. The molecules on which the light falls are the only ones that experience change; there is no propagation of the effect from part to part - an important particular, because it is what we observe in the case of sight.
The retina, the nervous expansion of the eye, is so constituted that a maximum effect upon it is occasioned by the yellow ray, the action declining on one side to the red, and on the other toward the violet, and ceasing at the extremes of those rays. For this reason, when a solar spectrum is examined by the eye, the yellow is the most brilliant space, there being a decline in intensity fro mit to the two extremes.
In my experiments on the decomposition of carbonic acid by plants in the sunlight, previously related in these papers, the maximum of action was found to be in the yellow, with a gradation of effect toward the red and violet ends of the spectrum respectively. From this it would appear that a relation exists between light and compounds having a carbon nucleus, answering to that observed in the case of the retina of the eye. Such a relation is very well illustrated in the case of other chemical elements, as silver, a metal which is the basis of all ordinary photographic preparations. The ray of maximum action is in the indigo space. Objects viewed by a retina having a silver sensitive nucleus would present an appearance altogether unlike that they would offer to a carbon nucleus. The order of brilliancy in the lights would be no longer the same. The red and yellow parts of objects would be black, that is to say invisible, and other rays beyond the violet would come into view.
Among experiments that I have made on this subject, there is one of much physiological interest. The element phosphorus finds its maximum impression in the more refrangible portion of the spectrum, in that respect resembling silver. Upon a portion of translucent phosphorus, inclosed out of contact of air in a flattened glass tube, into which it had been drawn while melted, and then suffered to solidify, a solar spectrum was cast. The effect of light upon this kind of phosphorus is to turn it eventually to a deep mahogany red, and chemically to throw it from an active into an inactive state. As amorphous phosphorus otherwise prepared, it ceases to shine in the dark. In the experimetns now alluded to, it appeared that this redding takes place in the indigo and violet spaces, so that the fixed lines known by spectroscopists as those about H were beautifully depicted. Now some physiologists have supposed that nerve vesicle tissue owes its property to the presence of unoxidized phosphorus, but if the principles we are contemplating be correct, and this were the case, the most brilliant ray in the spectrum should be the indigo, and not the yellow. Therefore, if vision be performed by chemical change in the substance of the retina, it is carbon and not phosphorus that is concerned.
If we admit that during the act of vision the retina, as a structure with a carbon nucleus, undergoes metamorphosis, the principles of photo-chemistry would lead us to expect that the yellow must be the brightest ray, and a harmony is thus established between this and other functional changes in the body. We also perceive the significance of certain structures of the eye which otherwise would appear to be without meaning. the rapid retrograde metamorphosis which must be taking place in the retina involves the provision of some means for moving away the wasted procuts and of supplying nutrition with the utmost quickness. And this is the office discharged by the choroid.
But such removals and supplies require time. Time, therefore, enters as an element in the visual operation. Sight commences instantaneously, but the image of an obeject may be seen long after the reality has disappeared. This instantaneous commencement of a retnal impression may be very strikingly illustrated. The spark of a Leyden-jar, though it does not last, as is affirmed, the millionth of a second, can without any difficulty be photographed even on so sluggish a compound as silver iodide. On the far more sensitive retina the chemical impression must be practivally contemporaneous with the impinging of the light.
If, after the eyelids have been closed for some time, we suddenly and steadfastly gaze at a bright object, and then quickly close the lids again, a phantom image is perceived existing in the indefinite darkness before us. By degrees the image becomes less and less distinct; in a minute or two it has disappeared.
The chemical hypothesis renders a very clear explanation of this effect - an explanation that commends itself to our attention as casting light in many cases on the curious phenomena of apparitions - henomena that have been not without influence on the history of mankind.
The duration and gradual extiction of the retinal phantoms correspond to the destruction and renovation taking place in the retina itself. The blood supply is very ample, as are likewise the channels for the removal of waste, but the operations require time to be accomplished. As in machines contrived by man, so in natural organs, the practical working does not always come up to the theorerical standard. Theoretically, as the retina suffers change under the incident light, the removal of waste and nutrition should go in an equal manner both as to time and quantity. A marvelous approach to the ideal perfection is attained, for though the action of light must necessarily be cumulative, that is, increasing with the continuance of exposure, objects do not become brighter and brighter as we look at them, but they attain their predestined distinctness at once. The action of the light, the removal of the waste it is occasioning, and the supply for renovation are all contemporaneously going on with an equal step, or so nearly so that such may be considered to be the practical effect.
Third: Of the mechanical hypothesis of vision.
There is a growing belief among those who are cultivating photo-chemistry that the mode of operation of a ray of light in accomplishing chemical changes is by establishing vibratory movements among the molecules of the subtance affected. As has been affirmed, perhaps fancifully, of certain singers, that they could cause a glass goblet to fly to pieces by a proper intonation of their voice, through the attempt of the glass by resonance to execute incompatible vibrations, so it is thought that an incident ray may break asunder a group of molecules by establishing among them discordant agitations. Chemical decompositions by radiations become thus connected theoretically with vibratory movements.
But these are vibrations not necessarily attended by any destruction of tissue. Waves of sound occasion such pulsations in the apparatus of the ear without prducing any chemical change in the auditory nerve.
If we consider the retina as an elastic shell, of which the parts are put into a purely mechanical movement by the pulsations of light, we abandon without explanation some of the most interesting portions of the structure of the eye. Of what use is that wonderful net-work of vessels constituting the choroid? It is a principle in physiology that the supply of blood to a part is proportional to its functional activity. The elaborate vascular mechanism in juxtaposition with the retina will bear no other interpretation than that that tissue is the seat of incessant chemical changes.
Moreover, physical science in its present state is not sufficiently advanced to furnish the means of clearly comprehending such purely mechanical motions executed by the ultimate particles of things. We may conceive of the comparatively slow swaying of groups of molecules under the influence of normal pulsations in the air, but not of the dance of atoms disturbed by transverse vibrations in the ether. If, therefore, there were no arguments of an anatomical kind to be presented against the admission of this hypothesis, we should be compelled to turn aside from it because of the inadequacy of our knowledge in tracing its conditions to their applications.
This, therefore, is the conclusion at which we finally arrive - that vision depends on chemical changes, especially of oxidation, in the retina, and that they approach in their nature those that we speak of as photographic. There is no difficulty in understanding how such changes may give rise to an influence transmitted along the optic nerve to the brain, when we reflect that the oxidation of a few particles of zinc may accomplish specific mechanical results through many miles of intervening telegraphic wire, producing mechanical motions as in the telegraph of Morse, or chemical changes as in that of Bain.
We have remarked that a critical study of the function of vision can not fail to lead to interesting results respecting the nervous system generally. Guided by that remark, we may perhaps profitably consider further the vestges of visual impressions, and the physical conditions under which they disturb us or spontaneously obtrude themselves on our attention.
The perception of external objects depends on the rays of light entering the eye, and converging so as to produce images, which make an impression on the retina, and through the optic nerve are delivered to the brain. The direction of these influence, so far as the observer is concerned, is from without to within, from the object to the brain.
But the inverse of this is possible. Impressions existing in the brain may take, as it were, and outward direction, and be projected or localized among external forms; or if the eyes be closed, as in sleep, or the obserber be in darkness, they will fill up the empty space before him with scenery of their own.
Inverse vision depends primarily on the condition that former impressions, inclosed in the optic thalami, or registering ganglia at the base of the brain, assume such a degree of relative intensity that they can arrest the attention of the mid. The moment that an equality is established between the intensity of these vestiges and sensations contemporaneously received from the outer world, or that the latter are wholly extinguished, as in sleep, inverse sight occurs, presenting, as the occasions may vary, apparitions, visions, dreams.
From the moral effect that arises, we are very liable to connect these with the supernatural. In truth, however, they are the natural results of the action of the nervous mechanism, which of necessity produces them whenever it is placed, either y normal or morbid or artificial causes, in the proper conditions. It confounds the subjective and the objective together. It can act either directly, as in ordinary vision, or inversely, as in cerebral sight, and in this respect resembles those instruments which equally yield a musical note whether the air is blown through them or drawn in.
The hours of sleep continually present us, in a state of perfect health, illusions that address themselves to the eye rather than to any other organ of sense, and these commonly combine into moving and acting scenes, a dream being truly a drama of the night. In certain states of health apprearances of a like nature intrude themselves before us even in the open day, but these, being corrected by the realities by which they are surrounded, impress us very differently. The want of unison between such images and the things among which they have intruded themselves, the anachronism of their advent, or other obvious incongruites, restrain the mind from delivering itself up to that absolute possesses us in our dreams. Yet, nevertheless, such is the constitution of man, the bravest and the wisest encounter these dictions of their own organization with awe.
The visions of an Arab merchant have ended in tincturing the daily life of halt the people of Asia and Africa for a thousand years. A spectre that came into the camp at Sardis the night before the battle of Philippi unnerved the heart of Brutus, and thereby put an end to the political system that had made the Roman republic the arbiter of the world. A phantom that appeared to Constantine strengthened his hand to that most difficult of all the tasks of a statesman, the destruction of an ancient faith.
Hallucinations are of two kinds - those seen when the eyes are open, and those perceived when they are closed. To the former the designation of apparitions, to the latter that of visions, may be given.
In a physiological sense, simple apparitions may be considered as arising from disturbances or diseases of the retina; visions, from the traces of impressions inclosed at a former time in the corpora quadrigemina and optic thalami.
From flying specks floating before us, the first rudiments of apparitions, it is but a step to the intercalation of simple or even grotesque images among the real objects at which we are looking; and indeed this is the manner in which they always offer themselves, as resting or moving among the actually existing things. Sir W. Scott says of children that lying is natural to them, and that to tell the truth is an ac quired habit. To them a white object faintly desried in the twilight is easily expanded into a moving and supernatural thing. I do not say how far we are liable to practice this deception upon ourselves in later life.
Insects flying in the air, or rather floating in vacancy before us, present the incipient form of retinal malady. In a more aggravated form is less frequently occurs as producing stars or sparks of light. From the earliest times physicians have observed that it is a "bad sign" when the patient localizes these images. "If the sick man says there be little holes in the curtains or black spots on his bedclothes, then it is plain that his end is at hand."
Sometimes the derangement giving origin to these appearances is not limited to the retina, but involves more or less completely the entire nervous apparatus of the eye. Retinal insanity and cerebral vision occur together. In cases investigated in a philosophical manner by the patients themselves, this complication is often distinctly recognized. Thus Nicolai, the Prussian bookseller, who published in the Memoirs of the Royal Academy of Berlin an interesting account of his sufferings, states that of the apparitions of men and women with which he was troubled, there were some that disappeared on shutting the eyes, but some did not. In such cases there can be no doubt that the disease affected the corpora quadrigemina and the optic thalami as well as the retina.
This condition, in which the receiving centres and registering ganglia at the base of the brain are engaged, is the one that yields the most striking instances of hallucinations in which apparations and visions co-exist. It can in less complicated forms be brought on artificially, as by alcohol in delirium tremens, or by the use of opium or other drugs. In these as in those forms, it is the localization of the phantom among the objects around us that gives power to the illusion. The form of a cloud no bigger than the hand is perhaps first seen floating ever the carpet; but this, as the eye follows it, takes on a distinct contour and a definite shape, and the sufferer sees with dismay a moping raven on some of the more distant articles of furniture. Or, out of an indistinct cloud, faces sometimes of surprising loveliness emerge, a more beautiful one succeeding as a former dies away. "Throw a handkerchief over that bed post," once said a dying friend to me; "there is on it a face too beautiful for me to look at." The mind, ever ready to practice imposture upon itself, will at last accompany the illusion with grotesque or even dreadful inventions. A sarcophagus, painted after the manner of the Egyptians, distresses the visionary with the rolling of its eyes. Martin Luther thus more than once saw the devil under the well-known form popularly assigned to him in the Middle Ages.
As the nervous centres become more profoundly involved, these visions become more impressive. Instead of a solitary phantom intruding itself among recognized realities, as the shade of deceased friend noiselessly steps before us through the unopened door, the complicated scenes of a true drama are displayed. The brain becomes a theatre. According as the travel or the reading of the sick man may have been, the illusion takes a stule: black vistas of Oriental architecture that stretch away into indinite night; temples and fanes and the battlemented walls of cities; colossal Pharaohs sitting in everlasting silence, with their hands upon their knees. "I saw," says De Quincey, in his Confessions of an Opium-Eater, "as I lay awake in bed, vast processions that passed along in mournful pomp; friezes of never-ending stories, that, to my mind, were as sad as solemn as if they were stories drawn from times before OEdipus or Priam, before Tyre, before Memphis, and, at the same time, a corresponding change took place in my dreams; a theatre seemed suddenly opened and lighted up within my brain, which presented nightly spectacles of more than earthly splendor."
Apparitions are the result of a false interpretation of impressions contemporaneously made on the retina; visions are a presentment of the relics of old ones remaining in the registering ganglia of the brain. We may be convinced of this, not so much from an examination of well related or authenticated cases as from what may be termed the natural history of ghosts. The Greeks and Romans were just as much liable to disorders of the nervous system as we are; but to them supernatural appearances came under mythological forms - Venus and Mars and Minerva. In the dreams of the ascetics of the Middle Ages, the places of these were taken by phantoms of the Virgin and the saints. The forms of such phantoms have changed with changes of the creeds of communities, and we may therefore, with good Reginald Scot, inquire, "If the appraritions which have been seen by true men and brave men in all ages of the world were real existences, what has become of the swarms of them in these latter times?"
One class of apparitions (perhaps it was the first to exist, as it is the last to remain) has survived all these changes - survived them because it is connected with a thing that never ceases, the affection of the human heart. To the people of every age the images of the dead have appeared. They are not infrequent even in our own times. It would be an ungracious task to enter on an examination of the best authenticated of such antecdotes. Inquiries of this kind can scarcely bee freed from the liability to an imputation on personal veracity, perceptive power, or moral courage, and it is not necessary to entangle ourselves with such causes of offense. It is enough for us to perceive that even here incongruities may be pointed out. The Roman saw the shade of his friend clothed in the well-known toga, the European sees his in our own grotesque garb. The spirit of Maupertuis that stood by the bay-window of the library at Berlin had on knee-breeches, silk stockings, and shoes with large silver buckles. To the philosopjer it may perjaps occur that it is very doubtful if, among the awful solemnities of the other world, the fashions ever vary. Shall we carry the vanities of life beyond the grave!
As illustrating the manner in which impressions of the past may emerge from the brain, I shall here furnish an instance bordering closely on the supernatural, and fairly representing the most marvelous of these psychological phenomena. It occured to a physician, who related it, in my hearing, to a circle whose conversation had turned on the subject of personal fear. "What you are saying," he remarked, "may be very true; but I can assure you that the sentiment of fear, in its utmost degree, is much less commmon than you suppose; and though you may be surprised to hear me say it, I know from personal experience that this is certainly so. When I was five or six years old, I dreamed that I was passing by a large pond of water in a very solitary place. On the opposite side of it there stood a great tree that looked as if it had been struck by lightning, and in the pond at another part an old fallen trunk, on one of the prone limbs of which there was a turtle sunning himself. On a sudden a wind arose, which forced me into the pond, and in my dying struggles to extricate myself from its green and slimy waters I awoke, trembling with terror.
"About eight years subsequently, while recovering from a nearly fatal attack of scarlet fever, this dream presented itself to me, identical in all respects, again. Even up to this time I think I had never seen a living tortoise or turtle, but I indistinctly remember that there was a picture of one in the first spelling-book that had been given me. Perhaps on account of my critical condition, this second dream impressed me more dreadfully than the first.
"A dozen years more elapsed. I had become a physician, and was now actively pursuing my professional duties in one of the Southern States. It so fell out that one July afternoon I had to take a long and wearisome ride on horseback. It was Sunday, and extremely hot; the path was solitary, there was not a house for miles. The forest had that intense silence so characteristic of this time of the day; all the wild animals and birds had gone to their retreats to be rid of the heat of the sun. Suddenly at one point of the road I came upon a great stagnant water pool, and casting my eyes across it, there stood a pine-tree blasted by lightning, and on a log that was nearly even with the surface a turtle was basking in the sun. The dream of my infancy was upon me; the bridle fell from my hands, an unutterable fear overshadowed me, and I slunk away from the accursed place.
"Though business occasionally afterward would have drawn me that way, I could not summon resolution to go, and actually have taken roundabout paths. It seemed to me profoundly amazing that the dream that I had had should after twenty years be realized, without respect to difference of scene, or climate, or age. A good clergyman of my acquaintance took the opportunity of improving the circumstance to my spiritual advantage, and in his kind enthusiasm - for he knew that I had been more than once brought to the point of death by such fevers - interpreted my dream that I should die of marsh miasm.
"Most persons have doubtless observed that they suddenly encounter events of a trivial nature, in their course of life, of which they have an indistinct recollection that they have dreamed before. For a long time it seemed to me that this was a case of that kind, and that it might be set down among the mysterious and unaccountable. How wonderful it is that we so often fail to see the simple explanation of things, when that explanations is actually intruding itself before us! And so in this case; it was long before the truth gleamed in upon me, before my reasoning powers shook off the delusive impressions of my senses. But it occurred at last; for I said to myself, Is it more probable that such a mystery is true, or that I have dreamed for the third time that which I had already dreamed of twice before? Have I really seen the blasted tree and the sunning turtle? Are a weary ride of fifty miles, the noontide heat, the silence that could almost be felt, no provocation to a dream? I have ridden under such circumstances many a mile fast asleep, and have awoke and known it; and so I resolved that if ever circumstances carried me to those parts again, I would satify myself as to the matter.
"Acoordinly, after a few years, when an incident led me to travel there, I revisited the well-remembered scene. There was still the stagnant pool, but the blasted pine-tree was gone; and after I had pushed my horse through the marshy thicket as far as I could force him, and then dismounted and pursued a close investigation on foot in every direction around the spot, I was clearly convinced that no pine-tree had ever grown there; not a stamp nor any token of its remains could be seen; and so now I have concluded that at the glimpse of the water, with the readiness of those who are falling asleep, I had adopted an external fact into a dream; that it had aroused the trains of thought which in former years had occupied me, and that, in fine, the mystery was all a delusion, and that I had been frightened with less than a shadow."
The instructive story of this physician teaches us how readily and yet how impressively the remains of old ideas may be recalled; how they may, as it were, be projected into the space beyond us, and take a position among existing realities. For this all that is necessary is that there should be an equalizsation of old impressions with new sensations, and that may be accomplished either by diminishing the force of present sensations, or by increasing the activity of those parts of the barin in which the old impressions are stored up.
Thus, when we are falling asleep, the organs of sense no longer convey their special impressions with the clearness and force that they did in our waking hours, and this gives to the traces that are stored up in the brain the power of drawing upon themselves the attention of the mind.
So likewise in the delirium of fevers, the spectral phantoms which trouble the sick are first seen when the apartment is darkened and kept silent, and especially when the patient closes his eyes. Until the senses are more completely overwhelmed, these shadows will disappear on brightly illuminating the room or on opening the eyes.
So too in the hour of death, when outer things are losing dull ear, and worn-out body, images that have reference to the manner of our past life emerge; the innocent and good being attended in their solemn journey by visions in unison with their former actions and thoughts, the evil, with scenes of terror and despair; and it is right that it should be so.
---
In this paper I commenced with a narrative of the discovery of the invisible fixed lines of the spectrum, and pursuing the natural suggestions of the subject, have been led to consider the sense of sight. I have shown how we are to explain direct vision, and how the same principles will apply to inverse vision or cerebral sight. Very few topics have a higher interest than this; for cerebral sight, personally or individually considered, presents us with the most potentous and ominous phenomena. It has influenced to an extent that we can scarcely appreciate the history of the human race. The lines invisible to the human eye, but seen by photographic substances, are ready to convey to us a world of information. They can extend all that has been done by the spectrum analysis terrestrial bodies, and reveal new facts respecting the constitution of other worlds. Of stars that we call fixed, they can tell us whether they are in motion or not, whether they are receding from or advancing toward us - information that we have gathered, perhaps less perfectly, from the visible lines.
We should ever bear in mind that the knowledge brought to us by light, the perception of things immediately around us, is but a portion of what we have really acquired. Darkness informs us tof the existence of the unicerse. In the brightness of the day we might learn that there is a sun and a moon, but it is only in the darkness of the night that there is revealed to us the infinity of worlds. From them we gather conceptions of the immensity of space, and learn how absolutely insignificant we individually are.
It is not possible to finish a subject so full of interest as this in a single paper, and so in the following one we will resume its consideration. A shadow can notfall upon a wall without leaving its permanent trace. There exists in nature an ineffaceable record of every act that every man has done.
When a beam of light is decomposed by a prism, and a spectrum is formed, the superbly colored image arising - red at the less, violet at the more, refrangible extremity - offers to the curious observes, as Sir David Bewster, who had spent many years in its examination, once said, a world within itself. It is a visible manifestation of the great forces of Nature.
But the visible manifestation which we thus behold is only the portion of what we might witness were our eyes more perfect. Herchel proved that there are invisible radiations below the red capable of affecting us with a sensation of warmth; Scheele and Ritter, that there are other invisible ratiations beyond the violet that can accomplish chemical decompositions.
To this visible world we have, therefore, to add one that is unseen.
But these observers, satisfied with having indicated the existence of forces in those regions, left to their successors the labor of a more thorough investigation - an investigation that has produced many interesting results.
It would require far more space than I have now at my disposal to do justice to these investigations. They have been conducted by some of the ablest philosophers, and many of them are specimens of consumate experimental skill. What I propose to do now is only to describe researchers I have personally made on this subject, and to offer reflections on their bearing.
In the summer of 1842 I made many attempts to photograph the Fraunhofer fixed lines of the spectrum, and at length obtained exceedingly beautiful impressions of them. These were on daguerreotype silver plates - the operation in use at that time. In the following spring (May, 1843) I published in the Philosophical Magazine a description of the method of conducting the experiment and the results it furnished. The following is an abstract of it:
"When a beam of the sun's light, directed horizontally by a heliostat, is admitted into a dark room, and passing through a slit with parallel sides, is received on the surface of a flint-glass prism, which refracts it at the angle of minimum deviation, and, after its passage through the prism, is converged to a focal image on a white screen by the action of an achromatic lens, the resulting spectrum is given in great purity, and Fraunhofer's lines are very distinct. If a photographic surface be set in the place of the white screen, it will exhibit the representation of multitudes of dark lines.
"I can not avoid calling attention to the remarkable circumstance, which has often presented itself to me, of a great change in the relative visibility of Fraunhofer's lines when seen at different times. Sometimes the strong lines in the red ray are so feeble that the eye can barely discover them, and then again they come out as dark as though marked in India ink on the paper. During these changes the other lines may or may not undergo corresponding variations. The same remark applies to the yellow and blue rays. It has seemed to me that the lines in the red are more visible as the sun approaches the horizon, and those at the more refrangible end of the spectrum are plainer in the middle of the day."
I subsequently substantiated this remark, and satisfied myself that many of the lines in the red are due to absorption by the earth's atmosphere, and therefore more sidtinct with a rising or setting sub. Those in the more refrangible regions, the indigo, the blue, and the violet, are due to absorption by the atmosphere of the sun.
The apparatus I have used may be thus more particularly described:
"A sunbeam, passing horizontally from a heliostat mirror into a dark room, was received on a screen with a slit in its centre, the slit being formed by a pair of parallel knife edges, one of which was movable by a micrometer screw, the instrument being, in fact, the common one used for showing diffracted fringes. The screw was adjusted so as to give an aperture 1/52 (?) inch wide, and the light passing through fell upon an equiantigular flint-glass prism placed at a distance of eleven feet. Immediately on the posterior face of the prism the ray was received on an achromatic lens, the object-glass of a telescope, and brought to a focus at the distance of six feet inches, at which an arrangement was adjusted for exposing white paper screens, on which the greater fixed lines might be seen, or sensitive plates substituted for the screens, occupying precisely the same position. The lines on the screens could, therefore, be compared with those on the sensitive surfaces as to position and magnitude with considerable accuracy.
"In order to identify these lines I have made use of the map of the spectrum published by Professor Powell in the Report of the British Association for 1839. With the apparatus as above described they are exceedingly distinct; no difficulty arises in the identification of the more prominent ones. The spectrum with which I have worked occupied upon the screen a space of nearly four inches and a quarter in length from the red to the violet, or, more correctly speaking, from the ray marked in that map A to the one marked k. In stating, however, that no difficulty arises in identifying these lines, I ought to add that I am referring to that particular map. In the figure annexed to Sir John Herschel's "Treatise on Light," in the Encyclopædia Metropolitana, the rays marked G seem to differ from that in the report. But Professor Powel's map being drawn from his personal observations, with reference to the very difficulties, and as it agrees with my own observations and measures, I have employed it, and therefore take the letters he gives.
"It will be understood that the whole spectrum and all its lines can not be obtained at one impression. The difficulty is that the different regions of the spectrum act with different power in producing the proper effect. Thus, if on common yellow iodide of silver the attempt were made to procure all the lines at one trial, it would be found that the blue region would have passed to a state of high solarization, and that all its fine lines were extinguished by being overdone long before any well-marked action could be traced in the less refrangible extremity. It is necessary, therefore, to examine the different reguins in succession, exposing the sensitive surface to each for a suitable length of time."
"The general result of these various photographs may be thus stated: Below the red rays, and in a reguin altogether invisible, are three very large lines, these I designated α, β, γ, they are obtained more perfectly in the morning and evening light, less perfectly in the middle of the day, and hence I inferred that they are probably due to the absorptive action of the earth's atmosphere. Fraunhofer's lines A and B were also depicted, but I did not obtain D, E, F. The line G and its companions were very strongly impressed. But by far the most striking in the whole photograph are those marked H. Then passing beyond the violet and out in the visible limits of the spectrum, four very striking groups made their appearence. To the first line of each of these, in continuation of Fraunhofer's nomenclature, I gave the designations M, N, O, P. In l There are three lines, in M eight, in N three, in O four, and in P five.
"Besides these larger groups, the photographs were crossed by hundreds of minuter lines, so that it was impossible to count them. If nearly six hundred have been counted between A and H, I should think there must be quite as many between H and P. In speaking of these lines as though they were strong individual ones, the statement is to be taken with some limitation. It is quite likely that each of these bolder lines is made up of a great number that are excessively narrow and close together.
"If the absorptive action of the sun's atmosphere be the cause of this phenomenon, that action must take place much more powerfully on the more refrangible and extra-spectral region. THe lines exhibited there are bold and strongly developed."
Scarcely was the paper from which the foregoing extracts are made published in the Philosophical Magazine, when I learned that in France M. E. Becquerel had already photographed the more refrangible lines, and published statements to that effect. But he had not observed those in the less refrangible regions, designated by me α, β, γ.
In fact, the process I was using was one I had recently discovered: it consisted in permitting the daylight to fall along with the sun rays on the photographic surface. The daylight and the sunlight antagonized each other, and these hitherto undiscovered lines made their appearance as positive photographs. The peculiarities of this singular and interesting process I will describe hereafter in one of these papers.
In 1846 MM. Foucault and Fizeau, having repeated the experiment thus originally made by me, presented a communication to the French Academy of Sicences. They had observed the antagonizing action above described, and had seen the ultra-spectrum heat lines, α, β, γ. They had taken the precaution to deposit with the Academy a sealed envelope containing an account of their discovery, not knowing that it had been made and published long previously in America.
Hereupon, M. E. Becquerel communicated to the same Academy a criticism on their paper. In this he remarks: "M. Draper, in examining the image produced by the action of the spectrum on plates of iodized silver, announced before those gentlemen the existence of protecting rays antagonizing the action of the solar rays, and even acting negtaively on iodide of silver." He strengthened his views by adding some observations that had been made by Sir J. Herschel, who did not assent to the existence of this protecting action, but thought that the daguerreotype impressions could be explained on Newton's theory of the colors on thin plates.
Herschel had made some investigations on the distribution of heat in the spectrum, using paper blackened on one side and moistened with alcohol on the other. He obtained a series of spots or patches, commencing above the yellow and extending far below the red. Some writers on this subject have considered that these observations imply a discovery of the lines α, β, γ; they forget, however, that Herchel did not use a slit, but the direct image of the sun - an image which was more than a quarer of an inch in diameter, as I know from the specimens he sent me, and which are still in my possession. Under such circumstances it was physically impossible that these or any other of the fixed lines should be seen.
IN 1871 M. Lamanski announced that he had discovered these lines by tha aid of a thermo-multiplier. In his memoir he states that, with the exception of Foucault and Fizeau, no one had made reference to them. Hereupon I draw attention to the memoi I had published in 1843, containing a map or engraving of them.
As has been mentioned, I did not obtain at that time the lines D, E, F. I used that fact as an argument in belhalf of the theory of the physical independence of the luminous and chemical radiations. These were, however, subsequently photographed by my son, Henry Draper.
There are, therefore, many rays emitted by the sun and other shining bodies to which our eyes are entirely blind.
Two different reasons may be alleged for outr inability to perceive such rays: first, they may not be able to reach the retina, the media of the eye not transmitting them; second, the retina may be so constituted as to be unable to receive their impressions.
It has long been known that rays which come from sheet-iron heated by a lamp can not pass either through the cornea or through the crystalline lens. Even of those that are furnished by an Argand flame, used as a luminous source of heat, less than one-fifth pass through the cornea alone, and scarcely one-fiftieth when the crystalline lens is interposed. Cima showed that of the heat rays emitted a flame, less than one-tenth pass through the cornea, lens, and vitreous humor conjointly. Janssen, using a flame, compared the heat transparency of the separate media of the eye with that of water included between glass plates, showing that there is a perfect accordance between them if taken of equal thickness. From this it is to be concluded that invisible rays to a certain extent reach the retina. Franx, by carefully conducted experiments with a thermo-electric pile, came to the conclusion that a quantity of obscure rays detectable by the thermometer can reach the retina, which therefore must be so constituted as not to be able to perceive them.
This settles the question so fas as the less refrangible or ultra-red rays are concerned. We have then to determine how it is with those at the opposite or more refrangible end of the spectrum. Do these pass through the media of the eye, or are they arrested and never reach the retina?
I made a series of experiments on these rays, and found that they passed through the different media of the eye examined separately, and what is more tothe point, through them all collectively with but little loss. There was no difficulty in obtaining a dark stain on paper made sensitive with chloride of silver, and placed at the back of the eye of an ox, from which the selerotic and pigment had been suitably removed. In a general manner the media of the eye act like water on the transmissibility of these rays.
Admitting from these experiments that invisible as well as visible rays reach the retina, we may next consider the nature of the impression made upon it, and are thus brought directly to an investigation of the act of vision.
There are three hypotheses to be considered:
1. That rays falling on the retina or black pigment impart to those structures a rise of temperature. This may be termed the caloric hypothesis.
2. That raysfalling on the retina occasion a chemical change or metamorphosis in its structure, implyung the occurance of waste in it, and therefore the necessity of repair. This may be termed the chemical hypothesis.
3. That rays falling on the retina throw its parts into a vibratory movement, not necessarily attended by any metamorphosis of tissue, as waves of sound occasion consentaneous pulsations in the auditory apparatus of the ear. This may be termed the mechanical hypothesis.
First: Of the caloric hypothesis of vision.
Comparative anatomy offers certain facts which lend plausibility to this hypothesis. Some of the most remarkable of these relate to the construction of the eye in lower animals. The ocelli, which consist of dark-colored or black spots, or black cup-shaped membranes, containing within them the rudiment of an optic nerve, are te beginning of an organ of vision. There being no optical apparatus for the production of images, the luminous impression must be felt as heat. For this the dark pigment is well desigued. It is an old physical experiment to lay upon the snow on a sunshiny winter day pieces of differently colored cloth. They will melt their way to a greater depth in proportion as their tint is darker: the black, becoming the warmest, sinks deepest; the white, reflecting most of the heat, scarcely melts the snow at all. Now an animal destitute of any visual organ can only be affected by the impressions of light in a very doubtful manner; but if there be upon its exterior a black spot, not only is there a much higher sensitiveness because of the increased absorptive power for heat, but the sphere of consciousness is greatly extended, from the possibility of acquiring a knowledge of directions in space - a knowledge that becomes more and more exavt with the increasing number and symmertical arrangement of these ocelli.
Ifwe apply these principles to a more perfect form of eye, as that of man, we are led to a new interpretation of the function of some of its parts. The black pigment becomes the receiving surface for images of external things, and rays falling upon it, in their diversity of color, brightness, and shade, in the act of becoming extinguished, engender heat. As with the tip of the finger passing over an object we can discover, even in the dark, spaces that are warm and those that are cool, so the rods and cones of Jacob's membrane, acting as tactile organs, convey to the brain a knowledge of the momentary distribution of heat on the dark concave of the eye. The pigment has therefore a far more important office to discharge than that of merely extinguishing stray light and darkening the indise of the globe.
But this calirific hypothesis is not without great difficulties. Heat suffers conduction. If this black pigment officiated as a transformer of light rays into heat by producing extinction, there must unavoidably be a lateral spread from the boundaties of warm to cooler spaces, the edges of images must be nebulous and without sharpness of contour. Moreover, there is reason to believe that the visual apparatus can not take cognizance of heat merely as such. Calorific rays reach the black pigment and raise its temperature without the retina being affected.
Such considerations seem, therefore, to exclude the calorific hypothesis, and prepare us for a n examintaion of the chemical.
Second: Of the chemical hypothesis of vision.
Numerous discoveries made of late years in relation to the chemical actions of light put us in possession of many facts having a bearing on this hypothesesi. A majority of compound substances, both inorganic and organic, suffer chemical modifications when exposed to the access of light, and, what is very significant, these changes are occasioned by definite classes of rays. One substance finds it maximum of action in the violet region, another in the yellow, another in the red. The effect in every instance grades off toward the less and more refrangible spaces respectively.
In these actions of decomposition there is nothing like lateral spreading, nothing answering to conduction. No better proof oof this is necessary than the exquisite sharpness of photographic pictures - a sharpness only limit by the optical imperfections of the lens with which they are made. The molecules on which the light falls are the only ones that experience change; there is no propagation of the effect from part to part - an important particular, because it is what we observe in the case of sight.
The retina, the nervous expansion of the eye, is so constituted that a maximum effect upon it is occasioned by the yellow ray, the action declining on one side to the red, and on the other toward the violet, and ceasing at the extremes of those rays. For this reason, when a solar spectrum is examined by the eye, the yellow is the most brilliant space, there being a decline in intensity fro mit to the two extremes.
In my experiments on the decomposition of carbonic acid by plants in the sunlight, previously related in these papers, the maximum of action was found to be in the yellow, with a gradation of effect toward the red and violet ends of the spectrum respectively. From this it would appear that a relation exists between light and compounds having a carbon nucleus, answering to that observed in the case of the retina of the eye. Such a relation is very well illustrated in the case of other chemical elements, as silver, a metal which is the basis of all ordinary photographic preparations. The ray of maximum action is in the indigo space. Objects viewed by a retina having a silver sensitive nucleus would present an appearance altogether unlike that they would offer to a carbon nucleus. The order of brilliancy in the lights would be no longer the same. The red and yellow parts of objects would be black, that is to say invisible, and other rays beyond the violet would come into view.
Among experiments that I have made on this subject, there is one of much physiological interest. The element phosphorus finds its maximum impression in the more refrangible portion of the spectrum, in that respect resembling silver. Upon a portion of translucent phosphorus, inclosed out of contact of air in a flattened glass tube, into which it had been drawn while melted, and then suffered to solidify, a solar spectrum was cast. The effect of light upon this kind of phosphorus is to turn it eventually to a deep mahogany red, and chemically to throw it from an active into an inactive state. As amorphous phosphorus otherwise prepared, it ceases to shine in the dark. In the experimetns now alluded to, it appeared that this redding takes place in the indigo and violet spaces, so that the fixed lines known by spectroscopists as those about H were beautifully depicted. Now some physiologists have supposed that nerve vesicle tissue owes its property to the presence of unoxidized phosphorus, but if the principles we are contemplating be correct, and this were the case, the most brilliant ray in the spectrum should be the indigo, and not the yellow. Therefore, if vision be performed by chemical change in the substance of the retina, it is carbon and not phosphorus that is concerned.
If we admit that during the act of vision the retina, as a structure with a carbon nucleus, undergoes metamorphosis, the principles of photo-chemistry would lead us to expect that the yellow must be the brightest ray, and a harmony is thus established between this and other functional changes in the body. We also perceive the significance of certain structures of the eye which otherwise would appear to be without meaning. the rapid retrograde metamorphosis which must be taking place in the retina involves the provision of some means for moving away the wasted procuts and of supplying nutrition with the utmost quickness. And this is the office discharged by the choroid.
But such removals and supplies require time. Time, therefore, enters as an element in the visual operation. Sight commences instantaneously, but the image of an obeject may be seen long after the reality has disappeared. This instantaneous commencement of a retnal impression may be very strikingly illustrated. The spark of a Leyden-jar, though it does not last, as is affirmed, the millionth of a second, can without any difficulty be photographed even on so sluggish a compound as silver iodide. On the far more sensitive retina the chemical impression must be practivally contemporaneous with the impinging of the light.
If, after the eyelids have been closed for some time, we suddenly and steadfastly gaze at a bright object, and then quickly close the lids again, a phantom image is perceived existing in the indefinite darkness before us. By degrees the image becomes less and less distinct; in a minute or two it has disappeared.
The chemical hypothesis renders a very clear explanation of this effect - an explanation that commends itself to our attention as casting light in many cases on the curious phenomena of apparitions - henomena that have been not without influence on the history of mankind.
The duration and gradual extiction of the retinal phantoms correspond to the destruction and renovation taking place in the retina itself. The blood supply is very ample, as are likewise the channels for the removal of waste, but the operations require time to be accomplished. As in machines contrived by man, so in natural organs, the practical working does not always come up to the theorerical standard. Theoretically, as the retina suffers change under the incident light, the removal of waste and nutrition should go in an equal manner both as to time and quantity. A marvelous approach to the ideal perfection is attained, for though the action of light must necessarily be cumulative, that is, increasing with the continuance of exposure, objects do not become brighter and brighter as we look at them, but they attain their predestined distinctness at once. The action of the light, the removal of the waste it is occasioning, and the supply for renovation are all contemporaneously going on with an equal step, or so nearly so that such may be considered to be the practical effect.
Third: Of the mechanical hypothesis of vision.
There is a growing belief among those who are cultivating photo-chemistry that the mode of operation of a ray of light in accomplishing chemical changes is by establishing vibratory movements among the molecules of the subtance affected. As has been affirmed, perhaps fancifully, of certain singers, that they could cause a glass goblet to fly to pieces by a proper intonation of their voice, through the attempt of the glass by resonance to execute incompatible vibrations, so it is thought that an incident ray may break asunder a group of molecules by establishing among them discordant agitations. Chemical decompositions by radiations become thus connected theoretically with vibratory movements.
But these are vibrations not necessarily attended by any destruction of tissue. Waves of sound occasion such pulsations in the apparatus of the ear without prducing any chemical change in the auditory nerve.
If we consider the retina as an elastic shell, of which the parts are put into a purely mechanical movement by the pulsations of light, we abandon without explanation some of the most interesting portions of the structure of the eye. Of what use is that wonderful net-work of vessels constituting the choroid? It is a principle in physiology that the supply of blood to a part is proportional to its functional activity. The elaborate vascular mechanism in juxtaposition with the retina will bear no other interpretation than that that tissue is the seat of incessant chemical changes.
Moreover, physical science in its present state is not sufficiently advanced to furnish the means of clearly comprehending such purely mechanical motions executed by the ultimate particles of things. We may conceive of the comparatively slow swaying of groups of molecules under the influence of normal pulsations in the air, but not of the dance of atoms disturbed by transverse vibrations in the ether. If, therefore, there were no arguments of an anatomical kind to be presented against the admission of this hypothesis, we should be compelled to turn aside from it because of the inadequacy of our knowledge in tracing its conditions to their applications.
This, therefore, is the conclusion at which we finally arrive - that vision depends on chemical changes, especially of oxidation, in the retina, and that they approach in their nature those that we speak of as photographic. There is no difficulty in understanding how such changes may give rise to an influence transmitted along the optic nerve to the brain, when we reflect that the oxidation of a few particles of zinc may accomplish specific mechanical results through many miles of intervening telegraphic wire, producing mechanical motions as in the telegraph of Morse, or chemical changes as in that of Bain.
We have remarked that a critical study of the function of vision can not fail to lead to interesting results respecting the nervous system generally. Guided by that remark, we may perhaps profitably consider further the vestges of visual impressions, and the physical conditions under which they disturb us or spontaneously obtrude themselves on our attention.
The perception of external objects depends on the rays of light entering the eye, and converging so as to produce images, which make an impression on the retina, and through the optic nerve are delivered to the brain. The direction of these influence, so far as the observer is concerned, is from without to within, from the object to the brain.
But the inverse of this is possible. Impressions existing in the brain may take, as it were, and outward direction, and be projected or localized among external forms; or if the eyes be closed, as in sleep, or the obserber be in darkness, they will fill up the empty space before him with scenery of their own.
Inverse vision depends primarily on the condition that former impressions, inclosed in the optic thalami, or registering ganglia at the base of the brain, assume such a degree of relative intensity that they can arrest the attention of the mid. The moment that an equality is established between the intensity of these vestiges and sensations contemporaneously received from the outer world, or that the latter are wholly extinguished, as in sleep, inverse sight occurs, presenting, as the occasions may vary, apparitions, visions, dreams.
From the moral effect that arises, we are very liable to connect these with the supernatural. In truth, however, they are the natural results of the action of the nervous mechanism, which of necessity produces them whenever it is placed, either y normal or morbid or artificial causes, in the proper conditions. It confounds the subjective and the objective together. It can act either directly, as in ordinary vision, or inversely, as in cerebral sight, and in this respect resembles those instruments which equally yield a musical note whether the air is blown through them or drawn in.
The hours of sleep continually present us, in a state of perfect health, illusions that address themselves to the eye rather than to any other organ of sense, and these commonly combine into moving and acting scenes, a dream being truly a drama of the night. In certain states of health apprearances of a like nature intrude themselves before us even in the open day, but these, being corrected by the realities by which they are surrounded, impress us very differently. The want of unison between such images and the things among which they have intruded themselves, the anachronism of their advent, or other obvious incongruites, restrain the mind from delivering itself up to that absolute possesses us in our dreams. Yet, nevertheless, such is the constitution of man, the bravest and the wisest encounter these dictions of their own organization with awe.
The visions of an Arab merchant have ended in tincturing the daily life of halt the people of Asia and Africa for a thousand years. A spectre that came into the camp at Sardis the night before the battle of Philippi unnerved the heart of Brutus, and thereby put an end to the political system that had made the Roman republic the arbiter of the world. A phantom that appeared to Constantine strengthened his hand to that most difficult of all the tasks of a statesman, the destruction of an ancient faith.
Hallucinations are of two kinds - those seen when the eyes are open, and those perceived when they are closed. To the former the designation of apparitions, to the latter that of visions, may be given.
In a physiological sense, simple apparitions may be considered as arising from disturbances or diseases of the retina; visions, from the traces of impressions inclosed at a former time in the corpora quadrigemina and optic thalami.
From flying specks floating before us, the first rudiments of apparitions, it is but a step to the intercalation of simple or even grotesque images among the real objects at which we are looking; and indeed this is the manner in which they always offer themselves, as resting or moving among the actually existing things. Sir W. Scott says of children that lying is natural to them, and that to tell the truth is an ac quired habit. To them a white object faintly desried in the twilight is easily expanded into a moving and supernatural thing. I do not say how far we are liable to practice this deception upon ourselves in later life.
Insects flying in the air, or rather floating in vacancy before us, present the incipient form of retinal malady. In a more aggravated form is less frequently occurs as producing stars or sparks of light. From the earliest times physicians have observed that it is a "bad sign" when the patient localizes these images. "If the sick man says there be little holes in the curtains or black spots on his bedclothes, then it is plain that his end is at hand."
Sometimes the derangement giving origin to these appearances is not limited to the retina, but involves more or less completely the entire nervous apparatus of the eye. Retinal insanity and cerebral vision occur together. In cases investigated in a philosophical manner by the patients themselves, this complication is often distinctly recognized. Thus Nicolai, the Prussian bookseller, who published in the Memoirs of the Royal Academy of Berlin an interesting account of his sufferings, states that of the apparitions of men and women with which he was troubled, there were some that disappeared on shutting the eyes, but some did not. In such cases there can be no doubt that the disease affected the corpora quadrigemina and the optic thalami as well as the retina.
This condition, in which the receiving centres and registering ganglia at the base of the brain are engaged, is the one that yields the most striking instances of hallucinations in which apparations and visions co-exist. It can in less complicated forms be brought on artificially, as by alcohol in delirium tremens, or by the use of opium or other drugs. In these as in those forms, it is the localization of the phantom among the objects around us that gives power to the illusion. The form of a cloud no bigger than the hand is perhaps first seen floating ever the carpet; but this, as the eye follows it, takes on a distinct contour and a definite shape, and the sufferer sees with dismay a moping raven on some of the more distant articles of furniture. Or, out of an indistinct cloud, faces sometimes of surprising loveliness emerge, a more beautiful one succeeding as a former dies away. "Throw a handkerchief over that bed post," once said a dying friend to me; "there is on it a face too beautiful for me to look at." The mind, ever ready to practice imposture upon itself, will at last accompany the illusion with grotesque or even dreadful inventions. A sarcophagus, painted after the manner of the Egyptians, distresses the visionary with the rolling of its eyes. Martin Luther thus more than once saw the devil under the well-known form popularly assigned to him in the Middle Ages.
As the nervous centres become more profoundly involved, these visions become more impressive. Instead of a solitary phantom intruding itself among recognized realities, as the shade of deceased friend noiselessly steps before us through the unopened door, the complicated scenes of a true drama are displayed. The brain becomes a theatre. According as the travel or the reading of the sick man may have been, the illusion takes a stule: black vistas of Oriental architecture that stretch away into indinite night; temples and fanes and the battlemented walls of cities; colossal Pharaohs sitting in everlasting silence, with their hands upon their knees. "I saw," says De Quincey, in his Confessions of an Opium-Eater, "as I lay awake in bed, vast processions that passed along in mournful pomp; friezes of never-ending stories, that, to my mind, were as sad as solemn as if they were stories drawn from times before OEdipus or Priam, before Tyre, before Memphis, and, at the same time, a corresponding change took place in my dreams; a theatre seemed suddenly opened and lighted up within my brain, which presented nightly spectacles of more than earthly splendor."
Apparitions are the result of a false interpretation of impressions contemporaneously made on the retina; visions are a presentment of the relics of old ones remaining in the registering ganglia of the brain. We may be convinced of this, not so much from an examination of well related or authenticated cases as from what may be termed the natural history of ghosts. The Greeks and Romans were just as much liable to disorders of the nervous system as we are; but to them supernatural appearances came under mythological forms - Venus and Mars and Minerva. In the dreams of the ascetics of the Middle Ages, the places of these were taken by phantoms of the Virgin and the saints. The forms of such phantoms have changed with changes of the creeds of communities, and we may therefore, with good Reginald Scot, inquire, "If the appraritions which have been seen by true men and brave men in all ages of the world were real existences, what has become of the swarms of them in these latter times?"
One class of apparitions (perhaps it was the first to exist, as it is the last to remain) has survived all these changes - survived them because it is connected with a thing that never ceases, the affection of the human heart. To the people of every age the images of the dead have appeared. They are not infrequent even in our own times. It would be an ungracious task to enter on an examination of the best authenticated of such antecdotes. Inquiries of this kind can scarcely bee freed from the liability to an imputation on personal veracity, perceptive power, or moral courage, and it is not necessary to entangle ourselves with such causes of offense. It is enough for us to perceive that even here incongruities may be pointed out. The Roman saw the shade of his friend clothed in the well-known toga, the European sees his in our own grotesque garb. The spirit of Maupertuis that stood by the bay-window of the library at Berlin had on knee-breeches, silk stockings, and shoes with large silver buckles. To the philosopjer it may perjaps occur that it is very doubtful if, among the awful solemnities of the other world, the fashions ever vary. Shall we carry the vanities of life beyond the grave!
As illustrating the manner in which impressions of the past may emerge from the brain, I shall here furnish an instance bordering closely on the supernatural, and fairly representing the most marvelous of these psychological phenomena. It occured to a physician, who related it, in my hearing, to a circle whose conversation had turned on the subject of personal fear. "What you are saying," he remarked, "may be very true; but I can assure you that the sentiment of fear, in its utmost degree, is much less commmon than you suppose; and though you may be surprised to hear me say it, I know from personal experience that this is certainly so. When I was five or six years old, I dreamed that I was passing by a large pond of water in a very solitary place. On the opposite side of it there stood a great tree that looked as if it had been struck by lightning, and in the pond at another part an old fallen trunk, on one of the prone limbs of which there was a turtle sunning himself. On a sudden a wind arose, which forced me into the pond, and in my dying struggles to extricate myself from its green and slimy waters I awoke, trembling with terror.
"About eight years subsequently, while recovering from a nearly fatal attack of scarlet fever, this dream presented itself to me, identical in all respects, again. Even up to this time I think I had never seen a living tortoise or turtle, but I indistinctly remember that there was a picture of one in the first spelling-book that had been given me. Perhaps on account of my critical condition, this second dream impressed me more dreadfully than the first.
"A dozen years more elapsed. I had become a physician, and was now actively pursuing my professional duties in one of the Southern States. It so fell out that one July afternoon I had to take a long and wearisome ride on horseback. It was Sunday, and extremely hot; the path was solitary, there was not a house for miles. The forest had that intense silence so characteristic of this time of the day; all the wild animals and birds had gone to their retreats to be rid of the heat of the sun. Suddenly at one point of the road I came upon a great stagnant water pool, and casting my eyes across it, there stood a pine-tree blasted by lightning, and on a log that was nearly even with the surface a turtle was basking in the sun. The dream of my infancy was upon me; the bridle fell from my hands, an unutterable fear overshadowed me, and I slunk away from the accursed place.
"Though business occasionally afterward would have drawn me that way, I could not summon resolution to go, and actually have taken roundabout paths. It seemed to me profoundly amazing that the dream that I had had should after twenty years be realized, without respect to difference of scene, or climate, or age. A good clergyman of my acquaintance took the opportunity of improving the circumstance to my spiritual advantage, and in his kind enthusiasm - for he knew that I had been more than once brought to the point of death by such fevers - interpreted my dream that I should die of marsh miasm.
"Most persons have doubtless observed that they suddenly encounter events of a trivial nature, in their course of life, of which they have an indistinct recollection that they have dreamed before. For a long time it seemed to me that this was a case of that kind, and that it might be set down among the mysterious and unaccountable. How wonderful it is that we so often fail to see the simple explanation of things, when that explanations is actually intruding itself before us! And so in this case; it was long before the truth gleamed in upon me, before my reasoning powers shook off the delusive impressions of my senses. But it occurred at last; for I said to myself, Is it more probable that such a mystery is true, or that I have dreamed for the third time that which I had already dreamed of twice before? Have I really seen the blasted tree and the sunning turtle? Are a weary ride of fifty miles, the noontide heat, the silence that could almost be felt, no provocation to a dream? I have ridden under such circumstances many a mile fast asleep, and have awoke and known it; and so I resolved that if ever circumstances carried me to those parts again, I would satify myself as to the matter.
"Acoordinly, after a few years, when an incident led me to travel there, I revisited the well-remembered scene. There was still the stagnant pool, but the blasted pine-tree was gone; and after I had pushed my horse through the marshy thicket as far as I could force him, and then dismounted and pursued a close investigation on foot in every direction around the spot, I was clearly convinced that no pine-tree had ever grown there; not a stamp nor any token of its remains could be seen; and so now I have concluded that at the glimpse of the water, with the readiness of those who are falling asleep, I had adopted an external fact into a dream; that it had aroused the trains of thought which in former years had occupied me, and that, in fine, the mystery was all a delusion, and that I had been frightened with less than a shadow."
The instructive story of this physician teaches us how readily and yet how impressively the remains of old ideas may be recalled; how they may, as it were, be projected into the space beyond us, and take a position among existing realities. For this all that is necessary is that there should be an equalizsation of old impressions with new sensations, and that may be accomplished either by diminishing the force of present sensations, or by increasing the activity of those parts of the barin in which the old impressions are stored up.
Thus, when we are falling asleep, the organs of sense no longer convey their special impressions with the clearness and force that they did in our waking hours, and this gives to the traces that are stored up in the brain the power of drawing upon themselves the attention of the mind.
So likewise in the delirium of fevers, the spectral phantoms which trouble the sick are first seen when the apartment is darkened and kept silent, and especially when the patient closes his eyes. Until the senses are more completely overwhelmed, these shadows will disappear on brightly illuminating the room or on opening the eyes.
So too in the hour of death, when outer things are losing dull ear, and worn-out body, images that have reference to the manner of our past life emerge; the innocent and good being attended in their solemn journey by visions in unison with their former actions and thoughts, the evil, with scenes of terror and despair; and it is right that it should be so.
---
In this paper I commenced with a narrative of the discovery of the invisible fixed lines of the spectrum, and pursuing the natural suggestions of the subject, have been led to consider the sense of sight. I have shown how we are to explain direct vision, and how the same principles will apply to inverse vision or cerebral sight. Very few topics have a higher interest than this; for cerebral sight, personally or individually considered, presents us with the most potentous and ominous phenomena. It has influenced to an extent that we can scarcely appreciate the history of the human race. The lines invisible to the human eye, but seen by photographic substances, are ready to convey to us a world of information. They can extend all that has been done by the spectrum analysis terrestrial bodies, and reveal new facts respecting the constitution of other worlds. Of stars that we call fixed, they can tell us whether they are in motion or not, whether they are receding from or advancing toward us - information that we have gathered, perhaps less perfectly, from the visible lines.
We should ever bear in mind that the knowledge brought to us by light, the perception of things immediately around us, is but a portion of what we have really acquired. Darkness informs us tof the existence of the unicerse. In the brightness of the day we might learn that there is a sun and a moon, but it is only in the darkness of the night that there is revealed to us the infinity of worlds. From them we gather conceptions of the immensity of space, and learn how absolutely insignificant we individually are.
It is not possible to finish a subject so full of interest as this in a single paper, and so in the following one we will resume its consideration. A shadow can notfall upon a wall without leaving its permanent trace. There exists in nature an ineffaceable record of every act that every man has done.
23.4.14
Dyeing Cotton Pure Blue.
Manufacturer and builder 5, 1876
The following is suggested by Böttger for dyeing cotton a pure blue: Heat a mixture of 187 grains of Prussian blue, 187 grains of tartaric acid, ½ fluid ounce of ammonia water, and 2½ fluid ounces of water, and filter after cooling. Add to the deep blue filtrate gradually a solution of caustic soda, until it is decolorized, and after some time assumes a light yellow tint. Impregnate the cotton with this solution, and pass it (preferable after allowing it to dry) through a warm, very dilute solution of sulphuric acid. This will neutralize the caustic soda, which discolored the Prussian blue, forming the soluble and neutral sulphate of soda, and the cotton will immediately assume a beautiful blue color, and needs only to be washed in water. The sulphuric acid must be so diluted that it has only a slightly perceptible sour taste.
The following is suggested by Böttger for dyeing cotton a pure blue: Heat a mixture of 187 grains of Prussian blue, 187 grains of tartaric acid, ½ fluid ounce of ammonia water, and 2½ fluid ounces of water, and filter after cooling. Add to the deep blue filtrate gradually a solution of caustic soda, until it is decolorized, and after some time assumes a light yellow tint. Impregnate the cotton with this solution, and pass it (preferable after allowing it to dry) through a warm, very dilute solution of sulphuric acid. This will neutralize the caustic soda, which discolored the Prussian blue, forming the soluble and neutral sulphate of soda, and the cotton will immediately assume a beautiful blue color, and needs only to be washed in water. The sulphuric acid must be so diluted that it has only a slightly perceptible sour taste.
22.4.14
21.4.14
The Penny Cyclopædia...: Glass.
The Penny Cyclopædia of The Society for the Diffusion of Useful Knowledge.
Volume XI.
Fuego, Tierra Del - Haddingtonshire.
London: Charles Knight and Co., 22, Ludgate Street.
MDCCCXXXVIII.
1838
GLASS, a transparent and impermeable substance, exceedingly brittle while cold, but which by the application of a high degree of heat is rendered so flexible and tenacious that it array with the utmost facility be moulded into any form. It is so ductile while heated, that it may be spun into filaments of the greatest conceivable fineness, and these when cold are pliant and elastic in a high degree. The time at which glass was invented is very uncertain. The popular opinion upon this subject refers the discovery to accident. It is said (Plin, Nat. Hist., lib. xxxvi., c. 26), that some mariners, who had a cargo of nitrum (salt, or, as some have supposed, soda) on board, having landed on the banks of the river Bolus, a small stream at the base of Mount Carmel in Palestine, and finding no stones to rest their pots on, placed under them some masses of nitrum, which, being fused by the heat with the sand of the river, produced a liquid and transparent stream : such was the origin of glass.' The antient Egyptians were certainly acquainted with the art of glass-making. This subject is very fully discussed in a memoir by M. Boudet, in the Description de l'Egypt,' vol. ix., Antiq. Memoires. The earthenware beads found in some mummies have an external coat of glass, coloured with a metallic oxide ; and among the ruins of Thebes pieces of blue glass have been discovered. Tne manufacture of glass was long carried on at Alexandria, from which city the Romans were supplied with that material ; but before the time of Pliny the manufacture had been introduced into Italy, Frame, and Spain (xxxvi., c. 26). Glass utensils have been found among the ruins of Herculaneum.
The application of glass to the glazing of windows is of comparatively modern introduction, at least in northern and western Europe. In 674 artists were brought to England from abroad to glaze the church windows at Weremouth in Durham ; and even in the year 1567 this mode of excluding cold from dwellings was confined to large establishments, and by no means universal even in them. An entry then made in the minutes of a survey of Ainwick Castle, the residence of the Duke of Northumberland, informs us that the glass casevents were taken down during the absence of the family, to preserve them from accident. A century after that time the use of window-glass was so email in Scotland that only the upper rooms in the royal palaces were furnished with it, the lower part having wooden shutters to admit or exclude the air.
The earliest manufacture of flint-glass in England was begun in 1557, and the progress made in perfecting it was so slow, that it was not until near the close of the seventeenth century that this country was independent of fo-reigners for the supply of the common article of drinking-glasses. In 1673 some plate-glass was made at Lambeth, in works supported by the Duke of Buckingham, but which were soon abandonod. It was exactly one century later that the first establishment of magnitude for the production of plate-glass was formed in this country, under the title of 'The Governor and Company of British Cast Plate-glass Manufacturers.' The members of this company subscribed an ample capital, and works upon a large scale were erected at Ravenhead, near Prescot in Lancashire, which have been in constant, and successful operation from that time to the present day.
At an early period of its history in this country the glass manufacture became an object of taxation, and duties were imposed by the 6 and 7 William and Mary, which acted so injuriously, that in the second year after the act was passed one half of the duties were taken off, and in the following year the whole was repealed. In 1746, when the manufacture had taken firmer root, an excise duty was again imposed, at the rate of one penny per pound on the materials used for making crown, plate, and flint-glass, and of one farthing per pound on those used for making bottles. In 1778 these rates were increased 60 per cent. upon crown and bottle-glass, and were doubled on flint and plate-glass. These rates were further advanced from time to time in common with the duties upon most other objects of taxation, and in 1806 stood as follows: - on plate and flint-glass, 49s. per cwt.; on crown and German sheet-glass, 36s. 9d. per cwt. ; on broad glass, 12s. 3d., and on common bottle-glass, 4s. 1d. per cwt. In 1813 those rates were doubled, and with the exception of a modification in 1819 in favour of plate-glass, then reduced to 31. per cwt., were continued at that high rate until 1825. In that year a change was made in the mode of taking the duty on flint-glass, by charging it on the weight of the fluxed materials instead of on the articles when made, a regulation which did not affect the rate of charge. In 1830 the rate on bottles was reduced from 8s. 2d. to 7s. per cwt. The only further alteration hitherto made in these duties occurred, in 1833, when, in consequence of the recommendation contained in the thirteenth Report of the Commissioners of Excise Inquiry, the rate upon flint-glass was reduced two-thirds, leaving it at 2d. per pound, a measure which was rendered necessary by the encouragement given under the high duty to the illicit manufacture, which was carried on to such an extent as to oblige several regular manufacturers to relinquish the prosecution of their business. The number of establishments for the manufacture of glass in the United Kingdom, in 1833, was 126, of which 106 were in England, 10 in Scotland, and 10 in Ireland. The principal seat of the manufacture in England is at Newcastle-upon-Tyne and the neighbouring town of Shields ; next in importance stands Stourbridge ; then the works in and near Liverpool, including the Plate-glass Company's establishment at Raven-head ; next follow Bristol, Warrington, Birmingham, and Leeds ; in London there were only three glass-houses, yielding to the revenue about 2 per cent. of the whole amount of duty collected upon this material. In Scotland five out of the ten houses are in and near Glasgow, two are in Leith, the remaining three are at Cartadike,Portobello, and Alloa. In Ireland four manufactures are in Dublin, two each in Cork and Belfast, and one each in Waterford and Newry.
There are five distinct kinds of glass, which differ from each other in regard to some of the ingredients of which they are made, and in the processes of manufacture. These kinds are, glass, or crystal ; crown-glass, or German sheet-glass ; broad-glass, or common window-glass; bottle, or common green glass ; and plate-glass.
The principal ingredients used for the production of each of these kinds of glass are silex, or flint, and an alkali. The differences in the various kinds result from the description of alkali employed, and from the addition of certain accessary materials, usually metallic oxides. The form in which silex is now universally used in this country for glass-making is that of sea-sand, and care is required to select those kinds which are free from foreign matters and impurities. The port of Lynn in Norfolk, and Alum Bay in the Isle of Wight, have long furnished the greater part of the silex used in our glass-houses. Flint-glass derives its name from the practice in former times of using flints calcined and ground in the manner now employed for making porcelain, but this has long been discontinued. Of late there has been some apprehension of a scarcity of sand suitable to the manufacture, and a good idea may be formed as to the importance attached to the purity of this chief ingredient from the fact that sand has been imported for the purpose from New South Wales. The alkali employed fix making fine flint-glass is pearl-ash, purified by solution and subsidence, in which process impurities to the extent of one-third of the weight are removed. Barilla, kelp, and wood ashes, combined with many impurities, are used for making inferior kinds of glass : the impurities even assist towards fusing the silex. Coarse alkaline substances all contain iron in some degree, and it is to the presence of this metal that the green colour of common glass is owing.
Fliint Glass, known in other countries under the name of crystal, is the most generally useful, the most brilliant, and the heaviest description of glass. This last quality it owes to the large quantity of oxide of lead which it contains, and which is used sometimes in the form of minium, but more frequently in that of litharge. This metallic oxide acts as a flux, and promotes the fusion of the other materials at a comparatively low temperature. The greater density which it imparts to glass gives to it a grater power a. refracting the rays of light, and it is this quality which renders flint-glass of so much importance for optical purposes. Nitre in a small proportion is used for the destruction of any carbonaceous matter in the other ingredients The oxygen which it gives out in the furnace further serves to maintain at their highest degree of oxygenation the metallic oxides that are present. Black oxide of manganese in minute proportion is also used to remove any foul colour that might otherwise remain through the impurity of the alkali used its cleansing property occasioned this oxide to be known formerly under the name of glass-soap. Any undue proportion of manganese would impart a purple hue to the mass, and if any considerable quantity be used that colour will be deepened almost to black. When through inadvertence the glass has been made purple, the I colour will be almost instantly discharged by thrusting a piece of wood into the melted mass. The cause of these changes is as follows the purple colour given by oxide of manganese arises from its being in a high state of oxygenation , the wood when thrust into the heated mass becomes speedily carbonized, and the carbon, combining with the superfluour oxygen, is driven off in the form of carbonic acid gas ; if by the addition of nitre the quantity of oxygen is again increased, it will combine with the manganese, and restore the purple colour. It will be seen from these circumstances how much skill and experience are necessary for the due mixture of ingredients so as to produce glass of the best quality. The manufacturers of flint-glass are generally unwilling to disclose the precise proportions in which they employ the requisite ingredients, and our knowledge on the subject must consequently be derived from scientific men who are not commercially engaged in the manufacture. Mr. Arthur Aikin, who has given much attention to the subject, recommends the following proportions :—
120 parts fine clean white sand,
40 " well-purified pearl ash,
35 " litharge, or minium,
13 " nitre ; and a small (undefined) quantity of the black oxide of manganese.
The French chemists recommend a much larger pro-portion of oxide of lead, but this is found to make the glass inconveniently soft. Where less metallic oxide is used, more nitre is required as a flux, and vice versa : the French chemists recommend only 2 to 3 parts of nitre, while Mr. Aikin recommends 13 parts.
The ingredients must all be intimately mixed together before they are put into the crucibles, or pots, which are previously placed in the furnace. As the bulk decreases by fusion, fresh portions of the ingredients are added until the pots are full of melted glass. A very strong and long continued heat is necessary, not only for the perfect fusion and amalgamation of the materials, but also for the discharge of the impurities which they contain. The chief of these, known under the name of sandivir, or glass-gall, consists of salts existing in the alkali which have but small affinity for silex, and from their specific levity rise in the form of a white porous scum to the top of the crucible, whence it must be removed before it is volatilized by the excessive heat of the furnace. This glass-gall is used as a powerful flux by refiners of metals. When the whole of the impurities have been thus thrown off by the action of heat and are removed, and the glass, or metal as it is called, appears colourless and translucent, the vitrification is known to be complete. The temperature of the furnace is then lowered by preventing the access of air until the glass loses apart of its fluidity, and assumes that pasty character which is the most convenient for the workmen, it being sufficiently consistent to be tenacious, but soft enough to yield to the slightest pressure without cracking or losing its tenuity. The material is usually brought to a perfect state of vitrification in about forty-eight hours from the first application of heat. There is perhaps no process of manufacture which excites so much the surprise and admiration of a stranger as that of fashioning flint-glass into all the various objects of convenience and ornament for which it is employed. To see a substance, proverbially brittle, blown with the human breath, pulled, twisted, cut, and then joined again with the greatest facility, never fails to strike with astonishment those who are unaccustomed to the sight. The tools with which all these operations are performed are of the most inartificial description, and do not appear to have received any improvement from the earliest records of the manufacture.
Glass of every kind would be oven much more brittle than it is, so brittle indeed as to crack and break at every comparatively small variation of temperature, if it were not subjected, immediately after it is fashioned, to the pro-cess of annealing. [ANNEALING.]
Crown Glass.
This is the best description of window-glass. It is made without any mixture of metallic oxide, and is both specifically lighter and much harder than flint-glass. Many receipts have been given for the production of this kind of glass. At the great works of St. Gobain, in France, the mixture of ingredients is said to be —
Fine white sand 100 parts,
Carbonate of lime " 12 "
Carbonate of soda, calcined " 48 "
Clippings of crown-glass 100 "
with minute portions of manganese and cobalt to correct impurities, and to remove the colour which those impurities would impart : they are not therefore at all times necessary. In England the ingredients are mostly sand, kelp, and slaked lime, in the ploportions of 200 pounds weight of the first, 330 pounds of the second, and 15 pounds weight of lime, to which is added about half the weight of the three materials in broken crown-glass, called by the makers cullet. The perfect fusion and refining of these materials are usually accomplished in about forty hours. Crown-glass of very superior quality is composed of
120 parts by weight of white sand,
60 " purified pearl-ash,
30 " saltpetre,
2 " borax,
1 " arsenic,
with the addition, if needed to correct the colour, of a mi nute quantity of manganese. Crown-glass is made by blowing, in the form of circular plates of 60 to 60 inches diameter. A quantity of glass in the pasty state is collected upon the end of a hollow iron tube, five feet long, similar to the tube used for blowing flint-glass. This lump of glass is then converted, by blowing through the tube, into a hollow globe of the requisite substance. This globe is flattened at the side opposite to the tube by pressing it upon a hard plane surface, and a solid rod of iron hating a small quantity of melted glass at the end is applied, and adheres to the centre of' the flattened side opposite to the tube, which is then removed by wetting the glass near to the point of union with the tube, leaving a small circular hole. To arrive at this stage the glass must have been several times re-heated, by placing it, when connected with the tube, within a small opening left for the purpose in the wall of the furnace. When transferred from the tube to the solid rod, called a punt, it must be again heated in the same manner, and is then twirled round by the workman somewhat in the manner that a mop is twirled to drive off the moisture ; with this twirling the softened material is continually driven off from the centre by the centrifugal force; the hole just mentioned expands, and at length forms an annulus of a few inches wide, when suddenly, and in a most unaccountable manner, it flies open, and the whole substance is converted into a flat disc of circular form, and, except at the centre, where it is attached to the rod, of a uniform thickness. These centre parts are used for the commonest purposes, such as glazing outhouses and the like.
Broad Glass is an inferior kind of window-glass, made with a cheaper kind of alkali. The usual materials are three measures of sand, the same quantity by measurement of kelp, and six measures of soap-boilers' waste. This mixture, when vitrified and brought to the proper consistency, is collected upon the hollow rod, or pontil, and blown to the requisite size, when it is cut open with a pair of shears, and spread into a flat plate.
Bottle Glass is still inferior in quality to broad-glass, the alkali employed being the cheapest that can be procured, with the addition of a portion of lime to assist fusion. Considerable manufactures of bottle-glass are carried on at Newcastle-upon-Tyne, encouraged by the low price of the title (small coal) which is used in the furnaces. The ingredients are usually nothing more than lime and sea-sand, the latter article having been frequently wetted with sea-water, and allowed to dry, in order that the salt may be allowed to deposit itself in the sand ; the soda contained in the salt is the only alkali, properly so called, that is used. Bottle-glass is fashioned by blowing, much in the same manner as flint-glass.
Plate Glass is both blown and cast. Plates which are blown are limited in dimensions, while those that are cast are made of very at size, the limit being caused by the expensiveness of the machinery required for the manage-ment of very large masses of the material. Plate-glass is necessarily costly, because of the numerous and laborious operations which it undergoes, and of the risks of fracture while subjected to them. The ingredients are chosen with the greatest care, and every possible amount of skill is brought to bear on the manufacture. The ingredients used are sand of the purest and whitest quality, and soda produced by the decomposition of common salt and lime : manganese and oxide of cobalt are added for the purpose of discharging colour. Soda is preferred to potash or pearl-ash because the glass that is made with it flows better when in fusion, a quality of much importance where large quantities employed for the production of the same piece. The lime acts as a flux, and is used in proportions varying from 1-24th to 1-16th of the whole materials employed. Besides these ingredients it is necessary to use a large proportion of broken plate-glass, or cullet. The following proportions are given by Parkes: -
Lynn sand, well washed and dried 720 parts
Alkaline salt, containing 40 per cent. of soda 450 "
Lime, slaked and sifted 80 "
Nitre 25 "
Broken plate-glass 425 "
-------------
1700 parts.
It requires 40 hours' exposure to the full heat of the furnace to reduce the materials to the proper state of fusion and vitrification. When this is accomplished, the glass is transferred from the melting-pot, by means of copper ladles, to a large vessel called a cuvette, previously heated to a very high degree ; when filled, it remains some hours in the furnace, to disperse the air that may have been introduced into the mass by the operation of ladling. When this effect has been produced, the cuvette is withdrawn from the furnace and taken to the casting-table, over the upper end of which it is raised and suspended by means of a crane. It is then thrown into an inclined position, and the contents are allowed to flow out upon the table, and are distributed by means of a roller over the whole surface of the table, bars of metal being placed at each side along its entire length, and across the bottom, in order to prevent the glass from running upon the floor. The casting of large plates of glass is one of the most beautiful processes in the arts : the large mass of melted glass, rendered in a high degree luminous by heat, which is poured forth, exhibiting changing colours in the sheet after the roller has been passed over it.
In the manufactory at Ravenhead, where the workmen are well trained and experienced, this operation is conducted with celerity and in silence, each of the twenty men engaged knowing well the part in the operation which he has to perform. Previous to the casting, the table is placed with one end against the mouth of an annealing oven, and as soon as the plate is set, it is carefully slipped from the surface of the table to the floor of the annealing oven, and when the oven has received as many plates as it will contain urn its floor, the door is closed and its crevices are stopped with mortar or clay, to insure the gradual cooling of the plates. They remain in the oven during a fortnight, after which the ovens are opened and their contents are with-drawn. The plates are then squared by means of a glazier's i diamond, then ground and polished, and when intended for mirrors they are silvered. In order to their being ground they are imbedded in plaster of Paris, and first powdered flint is rubbed steadily and evenly over the surface by machinery worked by steam power, both sides of the plate being grolind in succession. Emery powder is then substituted for ground flint, coarse at first, but finer afterwards as the rougher inequalities of the surfaces are removed : that part of the operation in which emery powder is used is called smoothing. The polishing is also performed by steam-machinery. The plates are firmly fixed upon large tables, and the polishing instruments, which are of wood covered with many folds of woollen cloth, having carded wool between each fold, are passed to and fro over the surface. The polishing substance used is colcothal, an oxide of iron which remains in the retorts after the distillation of acid from sulphate of iron : the two surfaces are polished in succession. or silvering glasses an amalgam of mercury and tin-foil is used, and this by means of considerable and long-continued pressure is made to adhere to one of the surfaces of the plate.
The processes here described are those used for the manufacture of cast plate-glass. Plates which are blown are made in the manner described for making broad-glass ; the after processes of squaring, grinding, smoothing, polishing, and silvering, are the same whether the plates are cast or blown.
Paste. - Artificial gems, familiarly known under the name of paste, are glass into the composition of which a large proportion of metallic oxide enters, such proportion being in almost all cases greater than that of the silex with which it is combined. The production of these mock jewels was formerly considered of much greater importance than at present, and a large part of every old treatise upon glass-making is made up of instructions for producing the best imitations of different precious stones. The processes recommended are in general tedious, and the directions given are very minute, several preliminary operations being de-scribed for purifying the ingredients used. The propriety of adopting different mixtures, independently of the colouring ingredients, which must of course be different for the imitation of different gems, is enforced by the fact that the different refractive and dispersive powers of those gems depend upon their specific gravity, and that in order to imitate each successfully the glass or paste employed should be of the same specific graft), as the stones to be imitated. The softness of all these compounds, when compared with that of the real gems, makes it impossible that any person resorting to such a test can be deceived with regard to their genuineness.
The foregoing description is confined to the explanation of those branches of the glass manufacture which, from their magnitude, are of the most importance. It would require a long treatise to explain minutely all the conditions necessary to be attended to in the processes, and to describe the variations which must be made in these conditions for producing the peculiar qualities of glass that are best adapted for other numerous purposes to which the material is applied.
The effect of high duties upon the consumption of articles of convenience is strikingly exemplified in the history of the duty upon glass in this country. In 1793, the year in which the war of the French revolution was begun, and when taxation was comparatively low, the quantity of all kinds of glass made and retained for use in the kingdom was 407,203 cwt., and the amount of revenue obtained from it 177,408l. The average rate of duty was therefore 8s.8½d. per cwt. upon the whole quantity. In 1834, the rate of duty was by progressive additions fourfold what it was in 1793, the average being 35s. 7½d. per cwt. upon the aggregate quan-tity used ; and although the population had in the meantime increased more than 60 per cent., the quantity of glass which was taken for use was only 374,351 cwt., or one-twelfth less than was so taken in 1793. If the quantity used in proportion to the population had continued the same, that quantity would in 1834 have amounted to 663,740 cwt., and a revenue equal to what was realized would have resulted from an average rate of 20s, instead of 35s. 7½d.
The precise rates of duty charged upon each kind of glass at the two periods were as follows :—
[Taulukko puuttuu]
In 1835 the duty upon flint-glass was reduced from 6d. to 2d. per. lb., as already mentioned : the ultimate result to the revenue from this partial reduction cannot yet be fairly estimated ; but it may well be doubted whether it can ever be judicious to extract revenue from an article of domestic manufacture, the ingredients for which are so cheap and so abundant as those from which glass can be made, and where the processes of manufacture are so simple in themselves that any person of ordinary talents may produce it illicitly, as it is well known many do in this country, in an attic or cellar. The quantity of each description of glass brought to charge by the excise, in each of the three years from 1834 to 1836, was as follows:—
[Taulukko puuttuu]
The real value of glass-ware exported from the United Kingdom, in each year from 1827 to 1836, was:-
[Taulukko puuttuu]
The greater part of these exports waionade to India and America. In 1836 the value of the shipments to various quarters of the world was as follows: -
To the north of Europe £22,210
To the south of Europe 14,440
To Africa, including the Mauritius 18,412
To the East India Company's territories and Ceylon 129,756
To Arabia, China, and the Eastern Islands To Australian Settlements 7,239
To British N American Colonies 103,481
To British West Indies 69,550
To Foreign West Indies 10,833
To United States of America 98,045
To Mexico, Brazil, and other parts of S. America 34,325
To Guernsey, Jersey, Alderney, and Man 6,943
---------------
£553,384
Volume XI.
Fuego, Tierra Del - Haddingtonshire.
London: Charles Knight and Co., 22, Ludgate Street.
MDCCCXXXVIII.
1838
GLASS, a transparent and impermeable substance, exceedingly brittle while cold, but which by the application of a high degree of heat is rendered so flexible and tenacious that it array with the utmost facility be moulded into any form. It is so ductile while heated, that it may be spun into filaments of the greatest conceivable fineness, and these when cold are pliant and elastic in a high degree. The time at which glass was invented is very uncertain. The popular opinion upon this subject refers the discovery to accident. It is said (Plin, Nat. Hist., lib. xxxvi., c. 26), that some mariners, who had a cargo of nitrum (salt, or, as some have supposed, soda) on board, having landed on the banks of the river Bolus, a small stream at the base of Mount Carmel in Palestine, and finding no stones to rest their pots on, placed under them some masses of nitrum, which, being fused by the heat with the sand of the river, produced a liquid and transparent stream : such was the origin of glass.' The antient Egyptians were certainly acquainted with the art of glass-making. This subject is very fully discussed in a memoir by M. Boudet, in the Description de l'Egypt,' vol. ix., Antiq. Memoires. The earthenware beads found in some mummies have an external coat of glass, coloured with a metallic oxide ; and among the ruins of Thebes pieces of blue glass have been discovered. Tne manufacture of glass was long carried on at Alexandria, from which city the Romans were supplied with that material ; but before the time of Pliny the manufacture had been introduced into Italy, Frame, and Spain (xxxvi., c. 26). Glass utensils have been found among the ruins of Herculaneum.
The application of glass to the glazing of windows is of comparatively modern introduction, at least in northern and western Europe. In 674 artists were brought to England from abroad to glaze the church windows at Weremouth in Durham ; and even in the year 1567 this mode of excluding cold from dwellings was confined to large establishments, and by no means universal even in them. An entry then made in the minutes of a survey of Ainwick Castle, the residence of the Duke of Northumberland, informs us that the glass casevents were taken down during the absence of the family, to preserve them from accident. A century after that time the use of window-glass was so email in Scotland that only the upper rooms in the royal palaces were furnished with it, the lower part having wooden shutters to admit or exclude the air.
The earliest manufacture of flint-glass in England was begun in 1557, and the progress made in perfecting it was so slow, that it was not until near the close of the seventeenth century that this country was independent of fo-reigners for the supply of the common article of drinking-glasses. In 1673 some plate-glass was made at Lambeth, in works supported by the Duke of Buckingham, but which were soon abandonod. It was exactly one century later that the first establishment of magnitude for the production of plate-glass was formed in this country, under the title of 'The Governor and Company of British Cast Plate-glass Manufacturers.' The members of this company subscribed an ample capital, and works upon a large scale were erected at Ravenhead, near Prescot in Lancashire, which have been in constant, and successful operation from that time to the present day.
At an early period of its history in this country the glass manufacture became an object of taxation, and duties were imposed by the 6 and 7 William and Mary, which acted so injuriously, that in the second year after the act was passed one half of the duties were taken off, and in the following year the whole was repealed. In 1746, when the manufacture had taken firmer root, an excise duty was again imposed, at the rate of one penny per pound on the materials used for making crown, plate, and flint-glass, and of one farthing per pound on those used for making bottles. In 1778 these rates were increased 60 per cent. upon crown and bottle-glass, and were doubled on flint and plate-glass. These rates were further advanced from time to time in common with the duties upon most other objects of taxation, and in 1806 stood as follows: - on plate and flint-glass, 49s. per cwt.; on crown and German sheet-glass, 36s. 9d. per cwt. ; on broad glass, 12s. 3d., and on common bottle-glass, 4s. 1d. per cwt. In 1813 those rates were doubled, and with the exception of a modification in 1819 in favour of plate-glass, then reduced to 31. per cwt., were continued at that high rate until 1825. In that year a change was made in the mode of taking the duty on flint-glass, by charging it on the weight of the fluxed materials instead of on the articles when made, a regulation which did not affect the rate of charge. In 1830 the rate on bottles was reduced from 8s. 2d. to 7s. per cwt. The only further alteration hitherto made in these duties occurred, in 1833, when, in consequence of the recommendation contained in the thirteenth Report of the Commissioners of Excise Inquiry, the rate upon flint-glass was reduced two-thirds, leaving it at 2d. per pound, a measure which was rendered necessary by the encouragement given under the high duty to the illicit manufacture, which was carried on to such an extent as to oblige several regular manufacturers to relinquish the prosecution of their business. The number of establishments for the manufacture of glass in the United Kingdom, in 1833, was 126, of which 106 were in England, 10 in Scotland, and 10 in Ireland. The principal seat of the manufacture in England is at Newcastle-upon-Tyne and the neighbouring town of Shields ; next in importance stands Stourbridge ; then the works in and near Liverpool, including the Plate-glass Company's establishment at Raven-head ; next follow Bristol, Warrington, Birmingham, and Leeds ; in London there were only three glass-houses, yielding to the revenue about 2 per cent. of the whole amount of duty collected upon this material. In Scotland five out of the ten houses are in and near Glasgow, two are in Leith, the remaining three are at Cartadike,Portobello, and Alloa. In Ireland four manufactures are in Dublin, two each in Cork and Belfast, and one each in Waterford and Newry.
There are five distinct kinds of glass, which differ from each other in regard to some of the ingredients of which they are made, and in the processes of manufacture. These kinds are, glass, or crystal ; crown-glass, or German sheet-glass ; broad-glass, or common window-glass; bottle, or common green glass ; and plate-glass.
The principal ingredients used for the production of each of these kinds of glass are silex, or flint, and an alkali. The differences in the various kinds result from the description of alkali employed, and from the addition of certain accessary materials, usually metallic oxides. The form in which silex is now universally used in this country for glass-making is that of sea-sand, and care is required to select those kinds which are free from foreign matters and impurities. The port of Lynn in Norfolk, and Alum Bay in the Isle of Wight, have long furnished the greater part of the silex used in our glass-houses. Flint-glass derives its name from the practice in former times of using flints calcined and ground in the manner now employed for making porcelain, but this has long been discontinued. Of late there has been some apprehension of a scarcity of sand suitable to the manufacture, and a good idea may be formed as to the importance attached to the purity of this chief ingredient from the fact that sand has been imported for the purpose from New South Wales. The alkali employed fix making fine flint-glass is pearl-ash, purified by solution and subsidence, in which process impurities to the extent of one-third of the weight are removed. Barilla, kelp, and wood ashes, combined with many impurities, are used for making inferior kinds of glass : the impurities even assist towards fusing the silex. Coarse alkaline substances all contain iron in some degree, and it is to the presence of this metal that the green colour of common glass is owing.
Fliint Glass, known in other countries under the name of crystal, is the most generally useful, the most brilliant, and the heaviest description of glass. This last quality it owes to the large quantity of oxide of lead which it contains, and which is used sometimes in the form of minium, but more frequently in that of litharge. This metallic oxide acts as a flux, and promotes the fusion of the other materials at a comparatively low temperature. The greater density which it imparts to glass gives to it a grater power a. refracting the rays of light, and it is this quality which renders flint-glass of so much importance for optical purposes. Nitre in a small proportion is used for the destruction of any carbonaceous matter in the other ingredients The oxygen which it gives out in the furnace further serves to maintain at their highest degree of oxygenation the metallic oxides that are present. Black oxide of manganese in minute proportion is also used to remove any foul colour that might otherwise remain through the impurity of the alkali used its cleansing property occasioned this oxide to be known formerly under the name of glass-soap. Any undue proportion of manganese would impart a purple hue to the mass, and if any considerable quantity be used that colour will be deepened almost to black. When through inadvertence the glass has been made purple, the I colour will be almost instantly discharged by thrusting a piece of wood into the melted mass. The cause of these changes is as follows the purple colour given by oxide of manganese arises from its being in a high state of oxygenation , the wood when thrust into the heated mass becomes speedily carbonized, and the carbon, combining with the superfluour oxygen, is driven off in the form of carbonic acid gas ; if by the addition of nitre the quantity of oxygen is again increased, it will combine with the manganese, and restore the purple colour. It will be seen from these circumstances how much skill and experience are necessary for the due mixture of ingredients so as to produce glass of the best quality. The manufacturers of flint-glass are generally unwilling to disclose the precise proportions in which they employ the requisite ingredients, and our knowledge on the subject must consequently be derived from scientific men who are not commercially engaged in the manufacture. Mr. Arthur Aikin, who has given much attention to the subject, recommends the following proportions :—
120 parts fine clean white sand,
40 " well-purified pearl ash,
35 " litharge, or minium,
13 " nitre ; and a small (undefined) quantity of the black oxide of manganese.
The French chemists recommend a much larger pro-portion of oxide of lead, but this is found to make the glass inconveniently soft. Where less metallic oxide is used, more nitre is required as a flux, and vice versa : the French chemists recommend only 2 to 3 parts of nitre, while Mr. Aikin recommends 13 parts.
The ingredients must all be intimately mixed together before they are put into the crucibles, or pots, which are previously placed in the furnace. As the bulk decreases by fusion, fresh portions of the ingredients are added until the pots are full of melted glass. A very strong and long continued heat is necessary, not only for the perfect fusion and amalgamation of the materials, but also for the discharge of the impurities which they contain. The chief of these, known under the name of sandivir, or glass-gall, consists of salts existing in the alkali which have but small affinity for silex, and from their specific levity rise in the form of a white porous scum to the top of the crucible, whence it must be removed before it is volatilized by the excessive heat of the furnace. This glass-gall is used as a powerful flux by refiners of metals. When the whole of the impurities have been thus thrown off by the action of heat and are removed, and the glass, or metal as it is called, appears colourless and translucent, the vitrification is known to be complete. The temperature of the furnace is then lowered by preventing the access of air until the glass loses apart of its fluidity, and assumes that pasty character which is the most convenient for the workmen, it being sufficiently consistent to be tenacious, but soft enough to yield to the slightest pressure without cracking or losing its tenuity. The material is usually brought to a perfect state of vitrification in about forty-eight hours from the first application of heat. There is perhaps no process of manufacture which excites so much the surprise and admiration of a stranger as that of fashioning flint-glass into all the various objects of convenience and ornament for which it is employed. To see a substance, proverbially brittle, blown with the human breath, pulled, twisted, cut, and then joined again with the greatest facility, never fails to strike with astonishment those who are unaccustomed to the sight. The tools with which all these operations are performed are of the most inartificial description, and do not appear to have received any improvement from the earliest records of the manufacture.
Glass of every kind would be oven much more brittle than it is, so brittle indeed as to crack and break at every comparatively small variation of temperature, if it were not subjected, immediately after it is fashioned, to the pro-cess of annealing. [ANNEALING.]
Crown Glass.
This is the best description of window-glass. It is made without any mixture of metallic oxide, and is both specifically lighter and much harder than flint-glass. Many receipts have been given for the production of this kind of glass. At the great works of St. Gobain, in France, the mixture of ingredients is said to be —
Fine white sand 100 parts,
Carbonate of lime " 12 "
Carbonate of soda, calcined " 48 "
Clippings of crown-glass 100 "
with minute portions of manganese and cobalt to correct impurities, and to remove the colour which those impurities would impart : they are not therefore at all times necessary. In England the ingredients are mostly sand, kelp, and slaked lime, in the ploportions of 200 pounds weight of the first, 330 pounds of the second, and 15 pounds weight of lime, to which is added about half the weight of the three materials in broken crown-glass, called by the makers cullet. The perfect fusion and refining of these materials are usually accomplished in about forty hours. Crown-glass of very superior quality is composed of
120 parts by weight of white sand,
60 " purified pearl-ash,
30 " saltpetre,
2 " borax,
1 " arsenic,
with the addition, if needed to correct the colour, of a mi nute quantity of manganese. Crown-glass is made by blowing, in the form of circular plates of 60 to 60 inches diameter. A quantity of glass in the pasty state is collected upon the end of a hollow iron tube, five feet long, similar to the tube used for blowing flint-glass. This lump of glass is then converted, by blowing through the tube, into a hollow globe of the requisite substance. This globe is flattened at the side opposite to the tube by pressing it upon a hard plane surface, and a solid rod of iron hating a small quantity of melted glass at the end is applied, and adheres to the centre of' the flattened side opposite to the tube, which is then removed by wetting the glass near to the point of union with the tube, leaving a small circular hole. To arrive at this stage the glass must have been several times re-heated, by placing it, when connected with the tube, within a small opening left for the purpose in the wall of the furnace. When transferred from the tube to the solid rod, called a punt, it must be again heated in the same manner, and is then twirled round by the workman somewhat in the manner that a mop is twirled to drive off the moisture ; with this twirling the softened material is continually driven off from the centre by the centrifugal force; the hole just mentioned expands, and at length forms an annulus of a few inches wide, when suddenly, and in a most unaccountable manner, it flies open, and the whole substance is converted into a flat disc of circular form, and, except at the centre, where it is attached to the rod, of a uniform thickness. These centre parts are used for the commonest purposes, such as glazing outhouses and the like.
Broad Glass is an inferior kind of window-glass, made with a cheaper kind of alkali. The usual materials are three measures of sand, the same quantity by measurement of kelp, and six measures of soap-boilers' waste. This mixture, when vitrified and brought to the proper consistency, is collected upon the hollow rod, or pontil, and blown to the requisite size, when it is cut open with a pair of shears, and spread into a flat plate.
Bottle Glass is still inferior in quality to broad-glass, the alkali employed being the cheapest that can be procured, with the addition of a portion of lime to assist fusion. Considerable manufactures of bottle-glass are carried on at Newcastle-upon-Tyne, encouraged by the low price of the title (small coal) which is used in the furnaces. The ingredients are usually nothing more than lime and sea-sand, the latter article having been frequently wetted with sea-water, and allowed to dry, in order that the salt may be allowed to deposit itself in the sand ; the soda contained in the salt is the only alkali, properly so called, that is used. Bottle-glass is fashioned by blowing, much in the same manner as flint-glass.
Plate Glass is both blown and cast. Plates which are blown are limited in dimensions, while those that are cast are made of very at size, the limit being caused by the expensiveness of the machinery required for the manage-ment of very large masses of the material. Plate-glass is necessarily costly, because of the numerous and laborious operations which it undergoes, and of the risks of fracture while subjected to them. The ingredients are chosen with the greatest care, and every possible amount of skill is brought to bear on the manufacture. The ingredients used are sand of the purest and whitest quality, and soda produced by the decomposition of common salt and lime : manganese and oxide of cobalt are added for the purpose of discharging colour. Soda is preferred to potash or pearl-ash because the glass that is made with it flows better when in fusion, a quality of much importance where large quantities employed for the production of the same piece. The lime acts as a flux, and is used in proportions varying from 1-24th to 1-16th of the whole materials employed. Besides these ingredients it is necessary to use a large proportion of broken plate-glass, or cullet. The following proportions are given by Parkes: -
Lynn sand, well washed and dried 720 parts
Alkaline salt, containing 40 per cent. of soda 450 "
Lime, slaked and sifted 80 "
Nitre 25 "
Broken plate-glass 425 "
-------------
1700 parts.
It requires 40 hours' exposure to the full heat of the furnace to reduce the materials to the proper state of fusion and vitrification. When this is accomplished, the glass is transferred from the melting-pot, by means of copper ladles, to a large vessel called a cuvette, previously heated to a very high degree ; when filled, it remains some hours in the furnace, to disperse the air that may have been introduced into the mass by the operation of ladling. When this effect has been produced, the cuvette is withdrawn from the furnace and taken to the casting-table, over the upper end of which it is raised and suspended by means of a crane. It is then thrown into an inclined position, and the contents are allowed to flow out upon the table, and are distributed by means of a roller over the whole surface of the table, bars of metal being placed at each side along its entire length, and across the bottom, in order to prevent the glass from running upon the floor. The casting of large plates of glass is one of the most beautiful processes in the arts : the large mass of melted glass, rendered in a high degree luminous by heat, which is poured forth, exhibiting changing colours in the sheet after the roller has been passed over it.
In the manufactory at Ravenhead, where the workmen are well trained and experienced, this operation is conducted with celerity and in silence, each of the twenty men engaged knowing well the part in the operation which he has to perform. Previous to the casting, the table is placed with one end against the mouth of an annealing oven, and as soon as the plate is set, it is carefully slipped from the surface of the table to the floor of the annealing oven, and when the oven has received as many plates as it will contain urn its floor, the door is closed and its crevices are stopped with mortar or clay, to insure the gradual cooling of the plates. They remain in the oven during a fortnight, after which the ovens are opened and their contents are with-drawn. The plates are then squared by means of a glazier's i diamond, then ground and polished, and when intended for mirrors they are silvered. In order to their being ground they are imbedded in plaster of Paris, and first powdered flint is rubbed steadily and evenly over the surface by machinery worked by steam power, both sides of the plate being grolind in succession. Emery powder is then substituted for ground flint, coarse at first, but finer afterwards as the rougher inequalities of the surfaces are removed : that part of the operation in which emery powder is used is called smoothing. The polishing is also performed by steam-machinery. The plates are firmly fixed upon large tables, and the polishing instruments, which are of wood covered with many folds of woollen cloth, having carded wool between each fold, are passed to and fro over the surface. The polishing substance used is colcothal, an oxide of iron which remains in the retorts after the distillation of acid from sulphate of iron : the two surfaces are polished in succession. or silvering glasses an amalgam of mercury and tin-foil is used, and this by means of considerable and long-continued pressure is made to adhere to one of the surfaces of the plate.
The processes here described are those used for the manufacture of cast plate-glass. Plates which are blown are made in the manner described for making broad-glass ; the after processes of squaring, grinding, smoothing, polishing, and silvering, are the same whether the plates are cast or blown.
Paste. - Artificial gems, familiarly known under the name of paste, are glass into the composition of which a large proportion of metallic oxide enters, such proportion being in almost all cases greater than that of the silex with which it is combined. The production of these mock jewels was formerly considered of much greater importance than at present, and a large part of every old treatise upon glass-making is made up of instructions for producing the best imitations of different precious stones. The processes recommended are in general tedious, and the directions given are very minute, several preliminary operations being de-scribed for purifying the ingredients used. The propriety of adopting different mixtures, independently of the colouring ingredients, which must of course be different for the imitation of different gems, is enforced by the fact that the different refractive and dispersive powers of those gems depend upon their specific gravity, and that in order to imitate each successfully the glass or paste employed should be of the same specific graft), as the stones to be imitated. The softness of all these compounds, when compared with that of the real gems, makes it impossible that any person resorting to such a test can be deceived with regard to their genuineness.
The foregoing description is confined to the explanation of those branches of the glass manufacture which, from their magnitude, are of the most importance. It would require a long treatise to explain minutely all the conditions necessary to be attended to in the processes, and to describe the variations which must be made in these conditions for producing the peculiar qualities of glass that are best adapted for other numerous purposes to which the material is applied.
The effect of high duties upon the consumption of articles of convenience is strikingly exemplified in the history of the duty upon glass in this country. In 1793, the year in which the war of the French revolution was begun, and when taxation was comparatively low, the quantity of all kinds of glass made and retained for use in the kingdom was 407,203 cwt., and the amount of revenue obtained from it 177,408l. The average rate of duty was therefore 8s.8½d. per cwt. upon the whole quantity. In 1834, the rate of duty was by progressive additions fourfold what it was in 1793, the average being 35s. 7½d. per cwt. upon the aggregate quan-tity used ; and although the population had in the meantime increased more than 60 per cent., the quantity of glass which was taken for use was only 374,351 cwt., or one-twelfth less than was so taken in 1793. If the quantity used in proportion to the population had continued the same, that quantity would in 1834 have amounted to 663,740 cwt., and a revenue equal to what was realized would have resulted from an average rate of 20s, instead of 35s. 7½d.
The precise rates of duty charged upon each kind of glass at the two periods were as follows :—
[Taulukko puuttuu]
In 1835 the duty upon flint-glass was reduced from 6d. to 2d. per. lb., as already mentioned : the ultimate result to the revenue from this partial reduction cannot yet be fairly estimated ; but it may well be doubted whether it can ever be judicious to extract revenue from an article of domestic manufacture, the ingredients for which are so cheap and so abundant as those from which glass can be made, and where the processes of manufacture are so simple in themselves that any person of ordinary talents may produce it illicitly, as it is well known many do in this country, in an attic or cellar. The quantity of each description of glass brought to charge by the excise, in each of the three years from 1834 to 1836, was as follows:—
[Taulukko puuttuu]
The real value of glass-ware exported from the United Kingdom, in each year from 1827 to 1836, was:-
[Taulukko puuttuu]
The greater part of these exports waionade to India and America. In 1836 the value of the shipments to various quarters of the world was as follows: -
To the north of Europe £22,210
To the south of Europe 14,440
To Africa, including the Mauritius 18,412
To the East India Company's territories and Ceylon 129,756
To Arabia, China, and the Eastern Islands To Australian Settlements 7,239
To British N American Colonies 103,481
To British West Indies 69,550
To Foreign West Indies 10,833
To United States of America 98,045
To Mexico, Brazil, and other parts of S. America 34,325
To Guernsey, Jersey, Alderney, and Man 6,943
---------------
£553,384